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Preface

Entanglement and (de-)coherence arguably define the central issues of concern
in present day quantum information theory. In state-of-the-art experiments,
ever larger numbers of quantum particles are entangled in a controlled way,
and ever heavier particles are brought to interfere. Some sub-fields of quantum
information science, in particular quantum cryptography, already find com-
mercial applications, and communal communication networks that rely on
quantum information technology are in preparation, as well as satellite-based
quantum communication. Moreover, entanglement is no more considered as
just an important resource for quantum information processing, but it allows
for a better characterization of “complex” quantum systems, realized, e.g., in
engineered, interacting many-particle systems, as well as in the solid state.
Thus, there is a permanent and in many respects enhanced need for a deeper
understanding of – and fresh approaches to – quantum entanglement, no-
tably in high-dimensional quantum systems. Equally so, entanglement being
a consequence of the quantum mechanical superposition principle for com-
posite systems, we need a better understanding of the environment-induced
destruction of coherent superposition states and of those interference phe-
nomena that may survive the action of a noisy environment. Such research
will allow us to identify realistic scales and possibly novel strategies for har-
vesting quantum interference phenomena.

The present book collects a series of advanced lectures on the theoretical
foundations of this active research field and illustrates the breadth of present
day theoretical efforts – from mathematics to mesoscopic transport theory.
Uhlmann and Crell start out with a mathematical introduction to the geom-
etry of state space, followed by an elementary introduction to entanglement
theory by Mintert et al. Back again in the mathematical realm, Kauffman
and Lomonaco discuss topological aspects of quantum computation, with
some close relation to the theory of braids and knots. Ozorio de Almeida
sheds new light on entanglement, in phase space, and touches some issues
related to decoherence theory, which are then systematically expanded by
Hornberger. Müller is subsequently concerned with dephasing and decoher-
ence in the context of spintronics and disordered systems, thus establishing
the bridge to real-life quantum transport, and the solid state.

All lecture notes start out from an elementary level and proceed along a
steep learning curve, what makes the material equally suitable for student
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seminars on the more fundamental theoretical aspects of quantum informa-
tion, as well as to supplement advanced lectures on this topic.

The material assembled here was first taught by the authors during an
international summer school on “Quantum Information” at the Max Planck
Institute for the Physics of Complex Systems in Dresden, in September
2005, thus inspiring the idea to compile the present book. The editors’ spe-
cial thanks therefore go to the authors, as well to Markus Grassl, Mar-
tin Rötteler, Christian Roos, Hartmut Häffner, Herbert Wagner, Per Dels-
ing, Daniel Estève, Steffen Glaser, Gilles Nogues, Mauro d’Ariano, Robin
Hudson, Reinhard Werner, Maciej Lewenstein, Andzrej Kossakowski, Karol
Życzkowski, Mark Fannes, Richard Gill, Rainer Blatt, Marita Schneider,
Christian Caron, Gabriele Hakuba, Andreas Erdmann, Helmut Deggelmann,
Torsten Goerke, Heidi Naether, Andreas Schneider, Hubert Scherrer, Andreas
Wagner, Karsten Batzke, and Jan-Michael Rost, who all have their share in
getting the present volume into press.

Freiburg im Breisgau and Bogotá, Andreas Buchleitner
August 2008 Carlos Viviescas

Markus Tiersch
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1 Geometry of State Spaces

A. Uhlmann and B. Crell

Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11,
D-04109 Leipzig, Germany

1.1 Introduction

In the Hilbert space description of quantum theory, one has two major in-
puts: First its linearity, expressing the superposition principle, and, second,
the scalar product, allowing to compute transition probabilities. The scalar
product defines an Euclidean geometry. In quantum physics, one may ask
for the physical meaning of geometric constructs in this setting. As an im-
portant example, we consider the length of a curve in Hilbert space and the
velocity, i.e., the length of the tangents, with which the vector runs through
the Hilbert space.

The Hilbert spaces are generically complex in quantum physics: There
is a multiplication with complex numbers; two linear-dependent vectors rep-
resent the same state. By restricting to unit vectors, one can diminish this
arbitrariness to phase factors.

As a consequence, two curves of unit vectors represent the same curve
of states, if they differ only in phase. They are physically equivalent. Thus,
considering a given curve – for instance, a piece of a solution of a Schrödinger
equation – one can ask for an equivalent curve of minimal length. This mini-
mal length is the Fubini–Study length. The geometry, induced by the minimal
length requirement in the set of vector states, is the Fubini–Study metric.

There is a simple condition from which one can read off whether all pieces
of a curve in Hilbert space fulfill the minimal length condition, so that their
Euclidean and their Fubini–Study length coincide piecewise: It is the par-
allel transport condition, defining the geometric (or Berry) phase of closed
curves by the following mechanism. We replace the closed curve by chang-
ing its phases to a minimal length curve. Generically, the latter will not
close. Its initial and its final point will differ by a phase factor, called the
geometric phase (factor). We only touch these aspects in our essay and ad-
vise the reading of [1] instead. We discuss, as quite another application, the
Mandelstam–Tamm inequalities.

The set of vector states associated to a Hilbert space can also be described
as the set of its 1-dimensional subspaces or, equivalently, as the set of all rank
one projection operators. Geometrically, it is the projective space given by the
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2 A. Uhlmann and B. Crell

Hilbert space in question. In finite-dimension, it is a well studied manifold.1

Again, we refer the reader to a more comprehensive monograph, say [2], to
become acquainted with projective spaces in quantum theory. We just like
to point to one aspect: Projective spaces are rigid. A map, transforming
our projective space one-to-one onto itself and preserving its Fubini–Study
distances, is a Wigner symmetry. On the Hilbert space level, this is a theorem
of Wigner asserting that such a map can be induced by a unitary or by an
anti-unitary transformation.

After these lengthy introduction to our first section, we have not much
to comment on our third one. It is just devoted to the (partial) extension of
what has been said above to general state spaces. It will be done mainly, but
not only, by purification methods.

The central objects are the generalized transition probability (fidelity),
the Bures distance, and its Riemann metric. These concepts can be defined,
and show similar features, in all quantum state spaces. They are “universal”
in quantum physics.

However, at the beginning of quantum theory, people were not sure
whether density operators describe states of a quantum system or not. In
our days, we think, the question is completely settled. There are genuine
quantum states described by density operators. But not only that, the affir-
mative answer opened new insight into the basic structure of quantum theory.
The second section is dedicated to these structural questions.

To a Hilbert spaces H, one associates the algebra B(H) of all bounded
operators that map H into itself. With a density operator ω and any operator
A ∈ B(H), the number

ω(A) = trAω

is the expectation value of A, provided the system is in the state given by ω.
Now, ω is linear in A, it attains positive values or zero for positive operators,
and it returns 1, if we compute the expectation value of the identity operator
1. These properties are subsumed by saying ω is a normalized positive linear
functional on the algebra B(H). Exactly such functionals are also called states
of B(H), asserting that every one of these objects can possibly be a state of
our quantum system.

If the Hilbert space is of finite-dimension, then every state of B(H) can
be characterized by a density operator. But in the infinite-dimensional cases,
there are in addition states of quite different nature, the so-called singular
ones. They can be ignored in theories with finitely many degrees of freedom,
for instance, in Schrödinger theory. But in treating unbounded many degrees
of freedom, we have to live with them.

One goes an essential step further in considering more general algebras
than B(H). The idea is that a quantum system is defined, ignoring other
demands, by its observables. States should be identified by their expectation

1 It is certainly the most important algebraic variety.
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values. However, not any set of observables should be considered as a quan-
tum system. There should be an algebra, say A, associated to a quantum
system containing the relevant observables. Besides being an algebra (over
the complex numbers), an Hermitian adjoint A† should be defined for every
A ∈ A and, finally, there should be “enough” states of A.

As a matter of fact, these requirements are sufficient, if A is of finite-
dimension as a linear space. Then, the algebra can be embedded as a so-called
∗-subalgebra in any algebra B(H) with dimH sufficiently large or infinite.
Relying on Wedderburn’s theorem, we describe all these algebras and their
state spaces; they all can be gained by performing direct products and direct
sums of some algebras B(H). Intrinsically, they are enumerated by their type,
a finite set of positive numbers. We abbreviate this set by d, to shorten the
more precise notation Id, for the so-called type-one algebras.

If the algebras are not finite, things are much more involved. There are
von Neumann (i.e., concrete W∗-) algebras, C∗-algebras, and more general
classes of algebras. About them we say (almost) nothing but refer, for a
physical motivated introduction, to [3].

Let us stress, however, a further point of view. In a bipartite system,
which is the direct product of two other ones – say Alice’s and Bob’s, both
systems are embedded in the larger one as subsystems. Their algebras become
subalgebras of another, larger algebra.

There is a more general point of view: It is a good idea to imagine the
quantum world as a hierarchy of quantum systems. An “algebra of observ-
ables” is attached to each one, together with its state space. The way an
algebra is a subalgebra of another one describes how the former one should
be understood as a quantum subsystem of a “larger” system.

Let us imagine such a hierarchical structure. A state in one of these sys-
tems determines a state in every of its subsystems: We just have to look at
the state by using the operators of the subsystem in question only, i.e., we
recognize what possibly can be observed by the subsystems observables.

Restricting a state of a quantum system (of an algebra) to a subsystem (to
a subalgebra) is equivalent to the partial trace in direct products. It extends
the notion to more general settings.

On the other hand, starting with a system, every operator remains an
operator in all larger systems containing the original one as a subsystem. To
a large amount, the physical meaning of a quantum system, its operators and
its states, is determined by its relations to other quantum systems.

The last section is an appendix devoted to the geometric mean, perhaps
the most important operator mean. It provides a method to handle two pos-
itive operators in general position. Only one subsection of the appendix is
directly connected with the third section: How parallel lifts of Alice’s states
are seen by Bob.
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1.2 Geometry of Pure States

1.2.1 Norm and Distance in Hilbert Space

Let us consider a Hilbert space2 H. Its elements are called vectors. If not ex-
plicitly stated otherwise, we consider complex Hilbert spaces, i.e., the multi-
plication of vectors with complex numbers is allowed. Vectors will be denoted
either by their mathematical notation, say ψ, or by Dirac’s, say |ψ〉.

For the scalar product, we write accordingly3

〈ϕ,ψ〉 or 〈ϕ|ψ〉 .

The norm or vector norm of ψ ∈ H reads

‖ ψ ‖ :=
√
〈ψ,ψ〉 = vector norm of ψ .

It is the Euclidian length of the vector ψ. One defines

‖ ψ − ψ′ ‖= distance between ψ and ψ′,

which is an Euclidean distance: If in any basis, |j〉, j = 1, 2, . . . , one gets

|ψ〉 =
∑

zj |j〉, zj = xj + iyj ,

and, with coefficients z′j , the similar expansion for ψ′, then

‖ ψ − ψ′ ‖=
(∑

[xj − x′j ]
2 + [yj − y′j ]

2
)1/2

,

justifying the name Euclidean distance.
The scalar product defines the norm and the norm the Euclidean geometry

of H. In turn, one can obtain the scalar product from the vector norm:

4〈ψ,ψ′〉 =‖ ψ + ψ′ ‖2 − ‖ ψ − ψ′ ‖2 −i ‖ ψ + iψ′ ‖2 +i ‖ ψ − iψ′ ‖2 .

The scalar product allows for the calculation of quantum probabilities. Now
we see that, due to the complex structure of H, these probabilities are also
encoded in its Euclidean geometry.

1.2.2 Length of Curves in H

We ask for the length of a curve in Hilbert space. The curve may be given by

t→ ψt, 0 ≤ t ≤ 1, (1.1)
2 We only consider Hilbert spaces with countable bases.
3 We use the “physicist’s convention” that the scalar product is anti-linear in ϕ

and linear in ψ.
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where t is a parameter, not necessarily the time. We assume that for all
ϕ ∈ H, the function t→ 〈ϕ,ψt〉 of t is continuous.

To get the length of (1.1), we have to take all subdivisions

0 ≤ t0 < t1 < · · · < tn ≤ 1

in performing the sup,

length of the curve = sup
n∑

j=1

‖ ψtj−1 − ψtj
‖ . (1.2)

The length is independent of the parameter choice.
If we can guaranty the existence of

ψ̇t =
d
dt
ψt ∈ H, (1.3)

then one knows

length of the curve =
∫ 1

0

√
〈ψ̇t, ψ̇t〉dt . (1.4)

The vector ψ̇t is the (contra-variant) tangent along (1.1). Its length is the
velocity with which4 ψ = ψt travels through H, i.e.,

ds
dt

=
√
〈ψ̇, ψ̇〉 . (1.5)

Interesting examples are solutions t→ ψt of a Schrödinger equation,

Hψ = i�ψ̇ . (1.6)

In this case, the tangent vector is time independent and we get

ds
dt

= �
−1
√
〈ψ,H2ψ〉 . (1.7)

The length of the solution between the times t0 and t1 is

length = �
−1(t1 − t0)

√
〈ψ,H2ψ〉 . (1.8)

Anandan [4, 5] has put forward the idea to consider the Euclidean length
(1.5) as an intrinsic and universal parameter in Hilbert space. For example,
consider

dt
ds

= 〈ψ̇, ψ̇〉−1/2 = �
(
〈ψ,H2ψ〉

)−1/2

instead of ds/dt and interpret it as the quantum velocity with which time is
elapsing during a Schrödinger evolution. Also other metrical structures, to
which we come later on, allow for similar interpretations.
4 We often write just ψ instead of ψt.
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Remark 1. Though we shall be interested mostly in finite-dimensional Hilbert
spaces or, in the infinite-dimensional case, in bounded operators, let us have
a short look at the general case.

In the Schrödinger theory H, the Hamilton operator, is usually unbounded
and there are vectors not in the domain of definition of H. However, there is
always an integrated version: A unitary group

t→ U(t) = exp
(
t

i�
H

)

which can be defined rigorously for self-adjoint H. Then ψ0 belongs to the
domain of definition of H exactly, if the tangents (1.3) of the curve ψt =
U(t)ψ0 exist. If the tangents exist, then the Hamiltonian can be gained by

i� lim
ε→0

U(t+ ε)− U(t)
ε

ψ = Hψ

and (1.7) and (1.8) apply. If, however, ψ0 does not belong to the domain
of definition of H, then (1.2) returns ∞ for the length of every piece of the
curve t→ U(t)ψ0. In this case, the vector runs, during a finite time interval,
through an infinitely long piece of t→ ψt. The velocity ds/dt must be infinite.

1.2.3 Distance and Length

Generally, a distance dist in a space attaches a real and not negative number
to any pair of points satisfying

(a) dist(ξ1, ξ2) = dist(ξ2, ξ1),
(b) dist(ξ1, ξ2) + dist(ξ2, ξ3) ≥ dist(ξ1, ξ3),
(c) dist(ξ1, ξ2) = 0 ⇔ ξ1 = ξ2.

A set with a distance is a metric space.
Given the distance, dist(. , .), of a metric space and two different points,

say ξ0 and ξ1, one may ask for the length of a continuous curve connecting
these two points.5 The inf of the lengths over all these curves is again a
distance, the inner distance. The inner distance, distinner(ξ0, ξ1), is never
smaller than the original one,

distinner(ξ0, ξ1) ≥ dist(ξ0, ξ1) .

If equality holds, then the distance (and the metric space) is called inner. A
curve connecting ξ0 and ξ1, the length of which equals the distance between
the two points, is called a short geodesic arc. A curve, which is a short geodesic
between all sufficiently near points, is a geodesic.

The Euclidian distance is an inner distance. It is easy to present the
shortest curves between to vectors, ψ1 and ψ0, in Hilbert space:
5 We assume that for every pair of points, such curves exist.
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t→ ψt = (1− t)ψ0 + tψ1 , ψ̇ = ψ1 − ψ0 . (1.9)

It is a short geodesic arc between both vectors.
In Euclidean spaces, the shortest connection between two points is a piece

of a straight line, and this geodesic arc is unique. Indeed, from (1.9) we
conclude

‖ ψt − ψr ‖= |t− r| ‖ ψ1 − ψ0 ‖ . (1.10)

With this relation, we can immediately compute (1.2) and we see that the
length of (1.9) is equal to the distance between the starting and ending points.

We have seen something more general: If in a linear space the distance
is defined by a norm, the metric is inner and the geodesics are of the form
(1.9).

1.2.4 Curves on the Unit Sphere

Restricting the geometry of H to the unit sphere {ψ ∈ H, ‖ ψ ‖= 1} can be
compared with the change from Euclidean geometry to spherical geometry
in an Euclidean 3-space. In computing a length by (1.2), only curves on the
sphere are allowed.

The geodesics on a unit sphere are great circles. These are sections of
the sphere with a plane that contains the center of the sphere. The spherical
distance of two points, say ψ0 and ψ1, is the angle, α, between the rays from
the center of the sphere to the two points in question:

distspherical(ψ1, ψ0) = angle between the radii pointing to ψ0 and ψ1,
(1.11)

with the restriction 0 ≤ α ≤ π. By the additivity modulo 2π of the angle, one
can compute (1.2) along a great circle to see that (1.11) is an inner metric.

If the two points are not antipodes, ψ0 + ψ1 �= 0, then the great circle
crossing through them and short geodesic arc between the two vectors is
unique. For antipodes, the great circle crossing through them is not unique,
and there are many short geodesic arcs of length π connecting them.

By elementary geometry,

‖ ψ1 − ψ0 ‖=
√

2− 2 cosα = 2 sin
α

2
, (1.12)

and cosα can be computed by

cosα =
〈ψ0, ψ1〉+ 〈ψ1, ψ0〉

2
. (1.13)

We see from (1.13) that
cosα ≤ |〈ψ0, ψ1〉| . (1.14)

Therefore, we have the following statement: The length of a curve on the unit
sphere connecting ψ0 with ψ1 is at least
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arccos |〈ψ0, ψ1〉| .

Applying this observation to the solution of a Schrödinger equation, one
gets the Mandelstam–Tamm inequalities [6, 7]. To get them, one simply com-
bines (1.14) with (1.8): If a solution ψt of the Schrödinger equation (1.6) goes
at time t = t0 through the unit vector ψ0 and at time t = t1 through ψ1,
then

(t1 − t0)
√
〈ψ,H2ψ〉 ≥ � arccos |〈ψ0, ψ1〉| (1.15)

must be valid. (Remember that H is conserved along solutions of (1.6) and
we can use any ψ = ψt from the assumed solution.)

However, a sharper inequality holds

(t1 − t0)
√
〈ψ,H2ψ〉 − 〈ψ,Hψ〉2 ≥ � arccos |〈ψ0, ψ1〉| . (1.16)

Namely, the right-hand side is invariant against gauge transformations

ψt → ψ′
t = exp(iγt)ψt .

The left side of (1.16) does not change in substituting H by H ′ = H − γ1,
and ψ′

t is a solution of
H ′ψ′ = i�ψ̇′ .

Hence, we can “gauge away” the extra term in (1.16) to get the inequality
(1.15).

Remark 2. The reader will certainly identify the square-root expression in
(1.16) as the uncertainty �ψ(H) of H in the state given by the unit vector
ψ. More specific, (1.16) provides the strict lower bound T�ψ(H) ≥ h/4
for the time T to convert ψ to a vector orthogonal to ψ by a Schrödinger
evolution.

Remark 3. If U(r) is a one-parameter unitary group with generator A, then

|r|�ψ(A) ≥ arccos |〈ψ,U(r)ψ〉| .

Interesting candidates are the position and the momentum operators, the
angular momentum along an axis, occupation number operators, and so on.

Remark 4. The tangent space consists of pairs {ψ, ψ̇} with a tangent or ve-
locity vector ψ̇, reminiscent from a curve crossing through ψ. The fiber of all
tangents based at ψ carries the positive quadratic form

ψ1, ψ2 → 〈ψ,ψ〉 〈ψ1, ψ2〉 − 〈ψ1, ψ〉 〈ψ,ψ2〉

gained by polarization.
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Remark 5. More general than proposed in (1.16), one can say something
about time-dependent Hamiltonians, H(t), and the Schrödinger equation

H(t)ψ = i�ψ̇ . (1.17)

If a solution of (1.17) is crossing the unit vectors ψj at times tj , then
∫ t1

t0

√
〈ψ,H2ψ〉 − 〈ψ,Hψ〉2dt ≥ � arccos |〈ψ0, ψ1〉| . (1.18)

For further application to the speed of quantum evolutions, see [8–10].

1.2.5 Phases

If the vectors ψ and ψ′ are linearly dependent, they describe the same state.

ψ → πψ =
|ψ〉〈ψ|
〈ψ,ψ〉 (1.19)

maps the vectors of H onto the pure states, with the exception of the zero
vector. Multiplying a vector by a complex number different from zero is the
natural gauge transformation offered by H. From this freedom in choosing a
state vector for a pure state,

ψ → εψ, |ε| = 1, (1.20)

the phase change is of primary physical interest.
In the following, we consider parameterized curve as in (1.1) on the unit

sphere of H. First we observe that

〈ψt, ψ̇t〉 (1.21)

is purely imaginary. To see this, one differentiates

0 =
d
dt
〈ψ,ψ〉 = 〈ψ̇, ψ〉+ 〈ψ, ψ̇〉,

and this is equivalent with the assertion. The curves

t→ ψt and t→ ψ′
t := εtψt , εt = exp(iγt) , (1.22)

are gauge equivalent. The states themselves,

t→ πt = |ψt〉〈ψt|, (1.23)

are gauge invariant.
From the transformation (1.22), we deduce for the tangents

ψ̇′ = ε̇ψ + εψ̇, ε−1ε̇ = iγ̇ (1.24)



10 A. Uhlmann and B. Crell

with real γ. Thus, by an appropriate choice of the gauge, one gets

〈ψ′, ψ̇′〉 = 0 , (1.25)

the geometric phase transport condition [11]. Indeed, (1.25) is the equation

〈ψ′, ψ̇′〉 = iγ̇〈ψ,ψ〉+ 〈ψ, ψ̇〉 = 0 .

Because of 〈ψ,ψ〉 = 1 and 〈ψ, ψ̇〉 = −〈ψ̇, ψ〉, we get

εt = exp
∫ t

t0

〈ψ̇, ψ〉dt . (1.26)

For a curve t→ ψt, 0 ≤ t ≤ 1, with ψ1 = ψ0, the integral is the geometric or
Berry phase [12]. For more about phases, see [1].

Remark 6. This is true on the unit sphere. If the vectors are not normalized,
one has to replace (1.25) by the vanishing of the “gauge potential”

〈ψ, ψ̇〉 − 〈ψ̇, ψ〉
2i

or
〈ψ, ψ̇〉 − 〈ψ̇, ψ〉

2i〈ψ,ψ〉 . (1.27)

In doing so, we conclude the following: The phase transport condition and
the Berry phase do not depend on the normalization.

1.2.6 Fubini–Study Distance

With the Fubini–Study distance [13, 14], the set of pure states becomes an
inner metric space. In our approach, we introduce a slight deviation from its
original form, which is defined on the positive operators of rank one. To this
end, we look at (1.19) in two steps. First, we skip normalization and replace
(1.19) by

ψ → |ψ〉〈ψ| ,
and only after that we shall normalize.

Let ψ0 and ψ1 be two vectors from H. We start with the first form of the
Fubini–Study distance:

distFS(|ψ1〉〈ψ1|, |ψ0〉〈ψ0|) = min
ε
‖ ψ1 − εψ0 ‖, (1.28)

where the minimum is over the complex numbers ε, |ε| = 1. One easily finds

distFS(|ψ1〉〈ψ1|, |ψ0〉〈ψ0|) =
√
〈ψ0, ψ0〉+ 〈ψ1, ψ1〉 − 2|〈ψ1, ψ0〉| . (1.29)

Therefore, (1.28) coincides with ‖ ψ1−ψ0 ‖, after choosing the relative phase
appropriately, i.e., after choosing 〈ψ1, ψ0〉 real and not negative.

Equation (1.28) is a distance in the set of positive rank one operators:
Choosing the phases between ψ2, ψ1 and between ψ1, ψ0 appropriately,
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distFS(|ψ2〉〈ψ2|, |ψ1〉〈ψ1|) + distFS(|ψ1〉〈ψ1|, |ψ0〉〈ψ0|)

becomes equal to

‖ ψ2 − ψ1 ‖ + ‖ ψ1 − ψ0 ‖≥‖ ψ2 − ψ0 ‖

and, therefore,

‖ ψ2 − ψ0 ‖≥ distFS(|ψ2〉〈ψ2|, |ψ0〉〈ψ0|) .

Now we can describe the geodesics belonging to the distance distFS and see
that (1.28) is an inner distance: If the scalar product between ψ0 and ψ1 is
real and not negative, then this is true for the scalar products between any
pair of the vectors

t→ ψt := (1− t)ψ0 + tψ1 , 〈ψ1 , ψ0〉 ≥ 0 . (1.30)

Then we can conclude

distFS(|ψr〉〈ψr|, |ψt〉〈ψt|) =‖ ψr − ψt ‖, (1.31)

and (1.30) is geodesic in H. Furthermore,

t→ |ψt〉〈ψt|, 0 ≤ t ≤ 1, (1.32)

is the shortest arc between |ψ0〉〈ψ0| and |ψ1〉〈ψ1|. Explicitly,

t→ (1− t)2|ψ0〉〈ψ0|+ t2|ψ1〉〈ψ1|+ t(1− t) (|ψ0〉〈ψ1|+ |ψ1〉〈ψ0|) . (1.33)

If ψ0 and ψ1 are unit vectors, πj = |ψj〉〈ψj | are (density operators of)
pure states. Then (1.31) simplifies to

distFS(π1, π0) =
√

2− 2|〈ψ1, ψ0〉| =
√

2− 2
√

Pr(π0, π1), (1.34)

where we have used the notation Pr(π1, π0) for the transition probability

Pr(π1, π0) = trπ0π1 . (1.35)

The transition probability is the probability to get an affirmative answer in
testing whether the system is in the state π1, if it was actually in state π0.

However, the geodesic arc (1.33) cuts the set of pure states only at π0 and
at π1. Therefore, the distance (1.28) is not an inner one for the space of pure
states. To obtain the appropriate distance, which we call DistFS, we have to
minimize the length with respect to curves consisting of pure states only. This
problem is quite similar to the change from Euclidean to spherical geometry
in H (and, of course, in ordinary 3-space). We can use a great circle on the
unit sphere of our Hilbert space, which obeys the condition (1.25), 〈ψ̇, ψ〉 = 0.
Then the map ψ → |ψ〉〈ψ| = π is one to one within small intervals of the
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parameter: The map identifies antipodes in the unit sphere of the Hilbert
space. Thus “in the small,” the map is one to one. Using this normalization,
we get

DistFS(π0, π1) = arccos
√

Pr(π0, π1) . (1.36)

The distance of two pure states become maximal if π0 and π1 are orthogonal.
This occurs at the angle π/2. As in the unit sphere, the geodesics are closed,
but now have length π.

Remark 7. If Dist is multiplied by a positive real number, we get again a
distance. (This is obviously so for any distance.) Therefore, another normal-
ization is possible. Fubini and Study, who considered these geodesics at first,
“stretched” them to become metrical isomorph to the unit circle [14]:

DistStudy(π0, π1) = 2 arccos
√

Pr(π0, π1) .

1.2.7 Fubini–Study Metric

As we have seen, with distFS, the set of positive operators of rank one becomes
an inner metric space. We now convince ourselves that it is a Riemannian
manifold. Its Riemannian metric, called Fubini–Study metric, reads

dsFS =
√
〈ψ,ψ〉〈ψ̇, ψ̇〉 − 〈ψ̇, ψ〉〈ψ, ψ̇〉dt (1.37)

for curves
t → ψt → |ψt〉〈ψt| , (1.38)

where in (1.37), the index t in ψt is suppressed.
To prove it, we consider firstly normalized curves ψt remaining on the

unit sphere of H. Imposing the geometric phase transport condition (1.25),
the map (1.38) becomes an isometry for small-parameter intervals. Simulta-
neously, (1.37) reduces to the Euclidean line element along curves fulfilling
(1.25). Hence, for curves on the unit sphere, (1.37) has been proved. To handle
arbitrary normalization, we scale by

ψ′
t = ztψt , zt �= 0 , (1.39)

and obtain

〈ψ′, ψ′〉〈ψ̇′, ψ̇′〉 − 〈ψ̇′, ψ′〉〈ψ′, ψ̇′〉 = (z∗z)2 [〈ψ,ψ〉〈ψ̇, ψ̇〉 − 〈ψ̇, ψ〉〈ψ, ψ̇〉] .
(1.40)

Therefore, (1.37) shows the correct scaling as required by distFS, and it is
valid on the unit sphere. Thus, (1.37) is valid generally, i.e., for curves of
positive operators of rank one.

We now express (1.37) in terms of states. If

πt = |ψt〉〈ψt| , 〈ψt, ψt〉 = 1 , 〈ψ̇t, ψt〉 = 0 , (1.41)
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then one easily sees that tr π̇π̇ = 2〈ψ̇, ψ̇〉 or

dsFS =

√
1
2
tr π̇2 dt (1.42)

for all (regular enough) curves t→ πt of pure states. These curves satisfy

trπ = 1, tr π̇ = 0 , tr π̇π = 0 . (1.43)

The latter assertion follows from π2 = π by differentiation, π̇ = π̇π+ππ̇, and
after taking the trace on both sides.

Let now ρ = |ψ〉〈ψ| with ψ = ψt being a curve in the Hilbert space. We
lost normalization of ψ, but we are allowed to require the vanishing of the
gauge potential (1.27). Then

trρ̇ = 2〈ψ, ψ̇〉, trρ̇2 = 2〈ψ,ψ〉 〈ψ̇, ψ̇〉+
1
2
(trρ̇)2 ,

and we conclude
ds2FS =

1
2
[tr ρ̇2 − (tr ρ̇)2] dt2 (1.44)

for curves t→ ρt of positive operators of rank one.
There is a further expression for the Fubini–Study metric since ρ2 = (trρ)ρ

for a positive operator of rank one. By differentiating and after some algebraic
manipulations, one arrives at

ds2FS =
[
(trρ)−1tr ρρ̇2 − (tr ρ̇)2

]
dt2 . (1.45)

1.2.8 Symmetries

It was Wigner’s famous idea [15] to use the transition probability to define
the concept of symmetry in the set of pure states. If π → T (π) maps the set
of pure states onto itself, T is a symmetry, if it satisfies

Pr(T (π1), T (π2)) = Pr(π1, π2) . (1.46)

Looking at (1.34) or (1.30), it becomes evident that (1.46) is valid if and only
if T is an isometry with respect to distFS and also to DistFS.

Before stating the main results of this section, we discuss the case dimH =
2, i.e., the 1-qubit space. Here, the pure states are uniquely parameterized by
the points of a 2-sphere, the Bloch sphere. Indeed, π is a pure state if

π =
1
2

⎛

⎝1 +
3∑

j=1

xjσj

⎞

⎠ , x2
1 + x2

2 + x2
3 = 1 , (1.47)

with a Bloch vector {x1, x2, x3}. Clearly,
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tr π̇2 =
1
2

∑
ẋ2

j

and, by (1.42),

dsFS =
1
2

√∑
ẋ2

j dt . (1.48)

It follows already that a symmetry T , in the sense of Wigner, is a map of
the 2-sphere into itself conserving the metric induced on the sphere by the
Euclidean one. Hence, there is an orthogonal matrix with entriesOjk changing
the Bloch vector as

π → T (π) ⇔ xj →
∑

k

Ojkxk . (1.49)

As it is well known, proper orthogonal transformations can be implemented
by a unitary transformation, i.e., with a suitable unitary U ,

U

⎛

⎝
∑

j

xjσj

⎞

⎠U−1 =
∑

j

x′jσj .

An anti-unitary, say V , can be written as V = Uθf with a spin-flip

θf

(
c0|0〉+ c1|1〉

)
=
(
c∗1|0〉 − c∗0|1〉

)
,

producing the inversion xj → −xj of the Bloch sphere. This says, in short,
that

T (π) = V πV −1 , (1.50)

V is either unitary or anti-unitary. The validity of (1.50) for all Hilbert spaces
was proposed by Wigner.

There is a stronger result6 for dimH > 2, saying that it suffices that T
preserves orthogonality:

Theorem 1. In order that (1.50) holds for all pure states π, it is necessary
and sufficient that one of the following conditions take place:

(a) It is a symmetry in the sense (1.46) of Wigner.
(b) It is an isometry of the Fubini–Study distance.
(c) It is dimH ≥ 3 and

Pr(π1, π2) = 0 ⇔ Pr(T (π1), T (π2)) = 0 . (1.51)

If dimH > 2, the condition (c) is obviously a more advanced statement
than (a) or (b). An elementary proof is due to Uhlhorn [16]. Indeed, the
theorem is also a corollary of a deeper rooted result by Dye [17].

6 The 1-qubit case is too poor in structure compared with higher dimensional ones.
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1.2.9 Comparison with Other Norms

While for the vectors of a Hilbert space one has naturally only one norm, i.e.,
the vector norm; there are many norms to estimate on an operator, say A.
For instance, one defines

‖ A ‖2=
√

trA†A and ‖ A ‖1= tr
√
A†A . (1.52)

The first one is called Frobenius or von Neumann norm. The second is the
functional- or 1-norm. If H = ∞, these norms can be easily infinite, and their
finiteness is a strong restriction to the operator. If A is of finite rank, then

‖ A ‖2≤‖ A ‖1≤
√

rank(A) ‖ A ‖2 . (1.53)

The rank of A is at most as large as the dimension of the Hilbert space.
For r ≥ 1, one also defines the Schatten norms

‖ A ‖r=
[
tr
(
A†A

)r/2
]1/r

. (1.54)

If π is a pure state’s density operator, then ‖ π ‖r= 1. The Schatten
norms of the difference ν = π2−π1 is also easily computed. One may assume
dimH = 2 as all calculations are done in the space spanned by the vectors
ψj with πj = |ψj〉〈ψj |. Now ν is Hermitian and with trace 0, its square is a
multiple of 1. We get

λ21 = ν2 = π1 + π2 − π1π2 − π2π1

and, taking the trace, λ2 = 1− Pr(π1, π2), by (1.35). Thus

‖ π2 − π1 ‖r= 21/r
√

1− Pr(π1, π2) . (1.55)

Comparing with

distFS(π1, π2) =
√

2
√

1− |〈ψ1, ψ2〉| =
√

2
√

1−
√

Pr(π1, π2)

results in

‖ π2 − π1 ‖r=
21/r

√
2

distFS(π1, π2)
√

1 +
√

Pr(π1, π2) . (1.56)

As the value of transition probability is between 0 and 1, the identity provides
tight inequalities between Schatten distances and the Fubini–Study distance
for two pure states.

One important difference between the Schatten distances (1.55) and the
Fubini–Study distance concerns the geodesics. We know that the geodesics
with respect to a norm read

t→ πt = (1− t)π0 + tπ1

and, therefore, they consist of mixed density operators for 0 < t < 1. On the
other hand, the Fubini-Study geodesics remain within the set of pure states.
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1.3 Operators, Observables, and States

Let us fix some notions. We denote the algebra of all bounded linear operators
acting on an Hilbert space H by B(H).

If dimH < ∞, every linear operator A is bounded. To control it, in
general, one introduces the norm

‖ A ‖∞= sup
ψ
‖ Aψ ‖ , ‖ ψ ‖= 1 (1.57)

and calls A bounded, if this sup over all unit vectors is finite. To be bounded
means that the operator cannot stretch unit vectors to arbitrary length. One
has

lim
r→∞

‖ A ‖r=‖ A ‖∞, (1.58)

if the Schatten norms are finite for large enough r. The ∞-norm (1.57) of
every unitary operator and of every projection operator (different from the
operator 0) is one.

Equation (1.57) defines an operator norm because one has

‖ AB ‖∞≤‖ A ‖∞ ‖ B ‖∞,

in addition to the usual norm properties. For 1 < r <∞, no Schatten norm
is an operator norm. On the other hand, there are many operator norms.
However, among them, the ∞-norm has a privileged position. It satisfies

‖ A†A ‖=‖ A ‖2 , ‖ A† ‖=‖ A ‖ . (1.59)

An operator norm satisfying (1.59) is called a C∗-norm. There is only one
C∗-norm in B(H), the ∞-norm.

Remark 8. In mathematics and in mathematical physics, the operation A→
A† is called the star operation. In these branches of science, the Hermitian
adjoint of an operator A is called A∗. The notion A† was used by Dirac in
his famous book “The Principles of Quantum Mechanics” [18].

Let us come now to the density operators. Density operators describe
states. We shall indicate them by using small Greek letters. Density operators
are positive operators with trace one:

ω ≥ 0 , trω = 1 . (1.60)

One can prove that

‖ ρ ‖1= tr ρ = 1 ⇔ ρ is a density operator. (1.61)

A bounded operator on an infinite-dimensional Hilbert space is said to be of
trace class, if its 1-norm is finite. The trace class operators constitute a tiny
portion of B(H) in the infinite case.
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1.3.1 States and Expectation Values

Let ω be a density operator and A ∈ B(H) an operator. The value trAω is
called the expectation value of A in state ω. There are always operators with
different expectation values, for two different density operators. In this sense,
one may say, observables distinguish states.

Remark 9. Not every operator in B(H) represents an observable in the strict
sense: An observable should have a spectral decomposition. Therefore, observ-
ables are represented by normal operators, i.e., A†A = AA† must be valid.
(For historical but not physical reasons, often hermiticity or, if dimH = ∞,
self-adjointness is required in textbooks. A critical overview can be found
in [19].) On the other hand, to distinguish states, the expectation values of
projection operators are sufficient.

As already said, observables (or operators) distinguish states, more ob-
servables allow for a finer description, i.e., they allow to discriminate between
more states. To use less observables is like “coarse graining”: Some states can-
not be distinguished any more.

These rules will be condensed in a precise scheme later on. The first step
in this direction is to describe a state in a different way, namely as the set of
its expectation values. To do so, one considers a state as a function defined
for all operators. In particular, if ω is a density operator, one considers the
function (or functional, or linear form)

A→ ω(A) := trAω . (1.62)

Let us stress the following properties of (1.62)

(1) Linearity: ω(c1A1 + c2A2) = c1ω(A1) + c2ω(A2)
(2) Positivity: ω(A) ≥ 0 if A ≥ 0
(3) It is normalized: ω(1) = 1.

At this point, one inverts the reasoning. One considers (1)–(3) the essen-
tial conditions and calls every functional on B(H) which fulfills these three
conditions, a state of the algebra B(H). In other words, (1)–(3) is the defini-
tion of the term state of B(H)! Therefore, the definition does not discriminate
between pure and mixed states from the beginning.

Let us see, how it works. If dimH <∞, every functional obeying (1), (2),
and (3) can be written

ω(A) = trAω , ω ≥ 0 , trω = 1

as in (1.62). Here the definition just reproduces the density operators.
Indeed, every linear form can be written ω(A) = trBA with an operator

B ∈ B(H). However, if trBA is a real and non-negative number for every
A ≥ 0, one infers B ≥ 0 (take the trace with a basis of eigenvectors of B to



18 A. Uhlmann and B. Crell

see it). Finally, condition (3) forces B to have trace one. Now one identifies
ω := B.

The case dimH = ∞ is more intriguing. A measure in “classical” mathe-
matical measure theory has to respect the condition of countable additivity.
The translation to the non-commutative case needs the so-called partitions
of the unit element, i.e., decompositions

1 =
∑

j

Pj (1.63)

with projection operators Pj . These decompositions are necessarily orthogo-
nal, PkPl = 0 if k �= l, and in one-to-one relation to decompositions of the
Hilbert space into orthogonal sums,7

H =
⊕

j

Hj , Hj = PjH . (1.64)

A state ω is called normal if for all partitions of 1,
∑

j

ω(Pj) = ω(1) = 1 (1.65)

is valid. ω is normal exactly if its expectation values are given as in (1.62)
with the help of a density operator ω.

There is a further class of states, the singular states. A state ω of B(H) is
called singular, if ω(P ) = 0 for all projection operators of finite rank. Thus,
if dim(PH) <∞, one gets ω(P ) = 0 for singular states.

A theorem asserts that every state ω of B(H) has a unique decomposition

ω = (1− p)ωnormal + pωsingular , 0 ≤ p ≤ 1 . (1.66)

In mathematical measure theory, a general ω corresponds to an additive mea-
sure, in contrast to the genuine measures which are countably additive. Ac-
cordingly we are invited to consider a normal state of B(H) to be a countably
additive non-commutative probability measure, and any other state to be an
additive non-commutative probability measure.

We cannot but at this point of the lecture mention the 1957 contribution
of Gleason [20]. He asked whether it will be possible to define states already
by their expectation values at projections.

Assume P → f(P ) ≥ 0, f(1) = 1, is a function that is defined only on
the projection operators P ∈ B(H) and which satisfies

7 If a sum of projections is a projection, it must be an orthogonal sum. To see it,
square the equation and take the trace. The trace of a product of two positive
operators is not negative and can be zero only if the product of the operators is
zero.
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∑

j

f(Pj) = 1 (1.67)

for all orthogonal partitions (1.63) of the unity 1. Gleason has proved that if
dimH > 2, there is a density operator ω with trPω = f(P ) for all P ∈ B(H),8

i.e., ω(P ) = f(P ).
The particular merit of Gleason’s theorem consists in relating directly

quantum probabilities to the concept of state as defined above: Suppose our
quantum system is in state ω, and we test whether P is valid, the answer is
YES with probability ω(P ) = trPω.

It took about 30 years to find out an extension to general states. There
is a lengthy proof by Maeda, Christensen, Yeadon, and others (see [21]),
exhibiting a lot of steps (most of them not particularly difficult) and a rich
architecture. Indeed, they examined the problem for general von Neumann
algebras, but in the case at hand, they assert the following extension of
Gleason’s finding:

Theorem 2. Assume dimH ≥ 3. Given a function f ≥ 0 on the projection
operators satisfying (1.65) for all finite partitions of 1. Then there is a state
ω fulfilling ω(P ) = f(P ) for all projection operators of B(H).

1.3.2 Subalgebras and Subsystems

There is a consistent solution to the question: What is a subsystem of a quan-
tum system with Hilbert space H and algebra B(H) ? The solution is unique
in the finite-dimensional case. Below we list some necessary requirements
that become sufficient if dimH <∞. As already indicated, a subsystem of a
quantum system should consist of less observables (operators) than the larger
one. For the larger one, we start with B(H) to be on (more or less) known
grounds.

Let A ⊂ B(H) be a subset. A is called a subalgebra of B(H) or, equiva-
lently, an operator algebra on H
(a) if A is a linear space and
(b) if A, B ∈ A then AB ∈ A.

Essential is also the condition:

(c) If A ∈ A then A† ∈ A.

A subset A of B(H) satisfying (a), (b), and (c) is called an operator ∗-algebra.
In an operator algebra, the scalar product of the Hilbert space is reflected by
the star operation, A → A†. A further point to mention concerns positivity
of operators: B ∈ B(H) is positive if and only if it can be written B = A†A.

8 As already mentioned, in two dimensions, the set of projections is too poor in
relations.
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Finally, an algebra A is called unital if it contains an identity or unit
element, say 1A. The unit element, if it exists, is uniquely characterized by

1AA = A1A = A for all A ∈ A, (1.68)

and we refer to its existence as

(d) A is unital.

Assume A fulfills all four conditions (a)–(d). Then one can introduce the
concept of state. We just mimic what has been said to be a state of B(H)
and obtain a core definition:

Definition 1. A state of A is a function A → ω(A) ∈ C of the elements of
A satisfying for all elements of A
(1’) ω(c1A1 + c2A2) = c1ω(A1) + c2ω(A2) (linearity),
(2’) ω(A†A) ≥ 0 (positivity),
(3’) ω(1A) = 1 (normalization).

Let us stop for a moment to ask what has changed compared to the
definition we gave in Sect. 1.3.1. The change is in (2) to (2’). In (2’), no
reference is made to the Hilbert space. It is a purely algebraic definition,
which only refers to operations defined in A. It circumvents the way A is
acting onH. That implies the following: The concept of state does not depend
how A is embedded in B(H), or “at what place A is sitting within a larger ∗-
algebra”. Indeed, to understand the abstract skeleton of the quantum world,
one is confronted with (at least!) two questions:

– What is a quantum system, what is its structure?
– How is a quantum system embedded in other ones as a subsystem?

Now let us proceed more prosaically. A,B → ω(A†B) is a positive Hermitian
form. Therefore,

ω(A†A)ω(B†B) ≥ ω(A†B) , (1.69)

which is the important Schwarz inequality.
The set of all states of A is the state space of A. It will be denoted by

Ω(A). The state space is naturally convex9:

ω :=
∑

pjωj ∈ Ω(A), (1.70)

for any convex combination of the ωj , i.e., for all these sums with
∑

pj = 1 and pj > 0 for all j . (1.71)

A face of Ω(A) is a subset with the following property: If ω is contained in
this subset, then for every convex decomposition (1.70), (1.71), of ω, also all
states ωj belong to this subset.

9 For more about convexity, see [22, 23].
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Example 1. Let P ∈ A be a projection. Define Ω(A)P to be the set of all
ω ∈ Ω(A) such that ω(P ) = 1. This set is a face of Ω(A). To see it, one looks
at the definition of state and concludes from (1.70) and (1.71) that ωj(P ) = 1
necessarily.

If A is a ∗-subalgebra of B(H) and dimH <∞, then every face of Ω(A)
is of the form Ω(A)P with a projection P ∈ A.

Definition 2. If a face consists of just one state π, then π is called extremal
in Ω(A). This is the mathematical definition. In quantum physics, a state π
of A is called pure if and only if π is extremal in Ω(A).

These are rigorous and fundamental definitions. We do not assert that ev-
ery A satisfying the requirements (a)–(d) above represents or “is” a quantum
system. But we claim that every quantum system, which can be represented
by bounded operators, can be based on such an algebra. Its structure gives
simultaneously meaning to the concepts of observable, state, and pure state.
It does so in a clear and mathematical clean way.

Subsystems

Now we consider some relations between operator algebras, in particular be-
tween quantum systems. We start by asking for the concept of subsystems of
a given quantum system. Let Aj be ∗-subalgebras of B(H) with unit element
1j respectively. From A1 ⊂ A2, it follows 1112 = 11, and 11 is a projection
in A2. To be a subsystem of the quantum system A2, we require

A1 ⊂ A2 , 11 = 12 . (1.72)

In mathematical terms, A1 is a unital subalgebra of A2. Thus, if two quantum
systems are represented by two unital ∗-algebras Aj satisfying (1.72), then
A1 is said to be a subsystem of A2.

In particular, A is a subsystem of B(H) if it contains the identity operator,
1H or simply 1 of H because 1 is the unit element of B(H).

The case 11 �= 12 will be paraphrased by calling A1 an incomplete sub-
system of A2.

Let A1 be a subsystem of A2 and let us ask for relations between their
states. At first we see the following: A state ω2 ∈ Ω(A2) gives automatically
a state ω1 on A1 by just defining ω1(A) := ω2(A) for all operators of A1. ω1

is called the restriction of ω2 to A1. Clearly, the conditions (1’)–(3’) remain
valid in restricting a state to a subsystem.

Of course, it may be that there are many states in A2 with the same
restriction to A1. Two (and more) different states of A2 may “fall down”
to one and the same state of the subalgebra A1. From the point of view
of a subsystem, two or more different states of a larger system can become
identical.
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Conversely, ω2 is an extension or lift of ω1. The task of extending ω1 to a
state of a larger system is not unique: Seen from the subsystem A1, (almost)
nothing can be said about expectation values for operators that are in A2

but not in A1.
As a consequence, we associate to the words a quantum system is a subsys-

tem of another quantum system, a precise meaning. Or, to be more cautious,
we have a necessary condition for the validity of such a relation. Imagining
that every system might be a subsystem of many other ones, one gets a faint
impression how rich the architecture of that hierarchy may be.

Remark 10. The restriction of a state to an incomplete subsystem will con-
serve the linearity and the positivity conditions (1’) and (2’). The normaliza-
tion (3’) cannot be guaranteed in general.

dim H = ∞. Some Comments

As a matter of fact, the conditions (a)–(c) for a ∗-subalgebra of B(H) are not
strong enough for infinite-dimensional Hilbert spaces. There are two classes
of algebras in the focus of numerous investigations, the C∗- and the von
Neumann algebras. We begin by defining10 C∗-algebras and then we turn to
von Neumann ones. Much more can be found in [3].

Every subalgebra A of B(H) is equipped with the ∞-norm, ‖ . ‖∞. One
requires the algebra to be closed11 with respect to that norm: For every
sequence Aj ∈ A, which converges to A ∈ B(H) in norm, ‖ A − Aj ‖∞→ 0,
the operator A must be also in A. In particular, a ∗-subalgebra is said to be a
C∗-algebra, if it is closed with respect to the operator norm. The ∞-norm is
a C∗-norm in these algebras, see (1.59). One can prove that in a C∗-algebra,
there exists just one operator norm that is a C∗-norm.

In the same spirit there is an 1-norm (or functional norm) ‖ . ‖1, esti-
mating the linear functionals of A. ‖ ν ‖1 is the smallest number λ for which
|ν(A)| ≤ λ ‖ A ‖∞ is valid for all A ∈ A.

With respect to a unital C∗-algebra, we can speak of its states, and its
normal operators are its observables. However, a C∗-algebra does not neces-
sarily provide sufficiently many projection operators: There are C∗-algebras
containing no projection different from the trivial ones, 0 and 1A.

In contrast, von Neumann algebras contain sufficiently many projections.
A is called a von Neumann algebra, if it is closed with respect to the so-called
weak topology.

To explain it, let F be a set of operators and B ∈ B(H). B is a weak limit
point of F if for every n, every ε > 0, and for every finite set ψ1, . . . , ψn of
vectors from H, there is an operator A ∈ F fulfilling the inequality

10 We define the so-called concrete C∗-algebras.
11 Then the algebra becomes a Banach algebra.



1 Geometry of State Spaces 23

n∑

j=1

|〈ψj , (B −A)ψj〉| ≤ ε .

The set of all weak limit points of F is the weak closure of F .
A von Neumann algebra A is a ∗-subalgebra of B(H), which contains all

its weak limit points. In addition, one requires to every unit vector ψ ∈ H an
operator A ∈ A with Aψ �= 0. Because of the last requirement, the notion of
a von Neumann algebra is defined relative to H. (If A is just weakly closed,
then there is a subspace, H0 ⊂ H, relative to which A is von Neumann.)

J. von Neumann could give a purely algebraic definition of the algebras
carrying his name. It is done with the help of commutants. For a subset
F ⊂ B(H), the commutant , F ′, of F is the set of all B ∈ B(H) commuting
with all A ∈ F . The commutant of a set of operators is always a unital and
weakly closed subalgebra of B(H).

If F† = F , i.e., F contains with A always also A†, its commutant F ′

becomes a unital ∗-algebra that, indeed, is a von Neumann algebra.
But then also the double commutant F ′′, the commutant of the commu-

tant, is a von Neumann algebra. Even more, von Neumann could show A is
a von Neumann algebra if and only if A′′ = A.

We need one more definition.

Definition 3. The center of an algebra consists of those of its elements,
which commute with every element of the algebra.

The center of A is in A′ and vice versa. We conclude

A ∩A′ = center of A . (1.73)

If A is a von Neumann algebra, A ∩A′ is the center of both, A and A′.
A von Neumann algebra is called a factor if its center consists of the

multiples of 1 only. Thus, a factor may be characterized by

A ∩A′ = C1 . (1.74)

1.3.3 Classification of Finite Quantum Systems

There are two major branches in group theory, the groups themselves and
their representations. We have a similar situation with quantum systems,
if they are seen as operator algebras: There is a certain ∗-algebra and its
concrete realizations as operators on a Hilbert space. However, at least in
finite-dimensions, our task is much easier than in group theory.

Wedderburn [24] has classified all finite-dimensional matrix algebras,12

or, what is equivalent, all subalgebras of B(H) if dimH <∞. Here we report
and comment his results for ∗-subalgebras only. (These results could also be

12 He extends the Jordan form from matrices to matrix algebras.
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read from the classification of factors by Murray and von Neumann,13 see [3],
Sect. III.2.)

One calls two ∗-algebras,

A ⊂ B(H) and Ã ⊂ B(H̃), (1.75)

∗-isomorph if there is a map Ψ from A onto Ã,

A → Ψ(A) = Ã ∈ Ã, A ∈ A ,

satisfying

(A) Ψ(c1A1 + c2A2) = c1Ψ(A1) + c2Ψ(A2) ,
(B) Ψ(AB) = Ψ(A)Ψ(B) ,
(C) Ψ(A†) = Ψ(A)† ,
(D) A �= B ⇒ Ψ(A) �= Ψ(B) ,
(E) Ψ(A) = Ã .

The first three conditions guarantee the conservation of all algebraic relations
under the map Ψ . From them, it follows the positivity of the map Ψ because
an element of the form A†A is mapped to Ã†Ã.

Condition (E) says that A is mapped onto Ã, i.e., every Ã can be gained
as Ψ(A). It follows that the unit element of A is transformed into that of Ã.

Condition (D) now shows that Ψ is invertible because to every A ∈ A,
there is exactly one Ã with Ψ(A) = Ã.

If only (A)–(D) is valid, Ψ maps A into Ã. Replacing (E) by

(E’) Ψ(A) ⊂ Ã
and requiring (A)–(D) defines an embedding of A into Ã.

If A → Ψ(A) ⊆ B(H) is an embedding of A, the embedding is also said to
be a ∗-representation of A as an operator algebra. A unital ∗-representation
of A maps 1A to the identity operator of H.

Important examples of unital ∗-representations and ∗-isomorphisms of
B(H) are given by matrix representations. Every orthonormal basis
ψ1, ψ2, . . . ψn of the Hilbert space H, dimH = n, induces via the map

A→ matrixA = {Aij}with matrix elementsAij = 〈ψi, Aψj〉, A ∈ B(H),

a unital ∗-isomorphism between B(H) and the algebra Mn(C), of complex
n×n matrices. If dimH = ∞, however, matrix representations are a difficult
matter.

13 Von Neumann and Murray introduced and investigated von Neumann algebras
in a famous series of papers on Rings of Operators [25–30], for a general reference
see e.g., [31].
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Direct Product and the Direct Sum Constructions

Let us review some features of direct products. We start with

H = HA ⊗HB . (1.76)

The algebra B(HA) is not a subalgebra of B(H), but it becomes one by

B(HA) → B(HA)⊗ 1B ⊂ B(HA ⊗HB) . (1.77)

Here “→” points to the unital embedding

A ∈ B(HA) → A⊗ 1B ∈ B(H) (1.78)

of B(HA) into B(H). It is an ∗-isomorphism from the algebra B(HA) onto
B(HA) ⊗ 1B. Similarly, B(HB) is ∗-isomorph to 1A ⊗ B(HB) and embedded
into B(H) as a ∗-subalgebra. 1A ⊗ B(HB) is the commutant of B(HA) ⊗ 1B

and vice versa. Based on A⊗B = (A⊗ 1B) (1A ⊗B), there is the identity

B(HA ⊗HB) = B(HA)⊗ B(HB) =
(
B(HA)⊗ 1B

) (
1A ⊗ B(HB)

)
. (1.79)

The algebras of B(HA) ⊗ 1B and 1A ⊗ B(HB) are not only subalgebras but
also factors. In finite-dimensions, every von Neumann factor on H is of that
structure: If A is a sub-factor of B(H) and dimH < ∞, then there is a
decomposition (1.76) such that A = B(HA)⊗ 1B.

It is worthwhile to notice the information contained in an embedding
of B(HA) into B(H): We need a definite decomposition (1.76) of H into a
direct product of Hilbert spaces with correct dimensions of the factors. Most
unitary transformations of H would give another possible decomposition of
the form (1.77) resulting in another embedding (1.77). Generally speaking,
distinguishing a subsystem of a quantum system enhances our knowledge and
can be well compared with the information gain by a measurement.

One knows how to perform direct sums of linear spaces. To apply it to
algebras, one has to say how the multiplication between direct summands is
working. Indeed, it works in the most simple way: A is the direct sum of its
subalgebras A1, . . . ,Am if every A ∈ A can be written as a sum

A = A1 + · · ·+Am , Aj ∈ Aj (1.80)

and the multiplication obeys

AjAk = 0 whenever j �= k . (1.81)

One can rewrite the direct sum construction in block matrix notation. Let
us illustrate it for the case m = 3:

A = A1 +A2 +A3 =

⎛

⎝
A1 0 0
0 A2 0
0 0 A3

⎞

⎠ , Aj ∈ Aj , (1.82)
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is the block matrix representation of the direct sum. If one considers, say A2,
as an algebra in its own right, its embedding into A is given by

A2 ↔

⎛

⎝
0 0 0
0 A2 0
0 0 0

⎞

⎠ . (1.83)

In contrast to the direct product construction, the embedding (1.83) is not a
unital one. Equation (1.82) illustrates the two ways to direct sums: Either an
algebra A can be decomposed as in (1.80), (1.81), or there are algebras Aj

and we build up A by a direct sum construction out of them. In the latter
case, one can write

A = A1 ⊕ · · · ⊕ Am .

We shall use both possibilities below.

Types

Our aim is to characterize invariantly the set of ∗-isomorphic finite von Neu-
mann algebras and to choose in it distinguished ones. The restriction to
finite-dimensions makes the task quite simple: Any ∗-subalgebra of B(H) is
∗-isomorph to a direct sum of factors.

Let d be a set of natural numbers,

d = {d1, . . . , dm} , |d| =
∑

dj . (1.84)

The number m is called the length of d.
We say that d′ = {d′1, . . . , d′m} is equivalent to d, and we write d ∼ d′ if

the numbers d′j are a permutation of the dj . If this takes place, i.e., if d ∼ d′,
we say that d is of the same type as d′.

Given d as in (1.84) and Hilbert spaces Hj of dimensions dimHj = dj ,
we consider

Bd = Bd1,...,dm
:= B(H1)⊕ B(H2)⊕ · · · ⊕ B(Hm) . (1.85)

Similarly we can proceed with d′ and Hilbert spaces H′
j of dimensions d′j .

We assert
d ∼ d′ ⇔ Bd is ∗-isomorph to Bd′ . (1.86)

To see the claim, we use the permutation dj → dij
. In Hj , we choose a basis

|k〉j , k = 1, . . . , dj and a basis |k〉ij
in Hij

. Obviously, there is a unitary U
with U |k〉j = |k〉ij

for all j, k. We see that both algebras become ∗-isomorphic
by A′ = UAU−1 for any operator A out of (1.85). We are now allowed to
state the following:

Definition 4. A ∗-algebra is of type d, if it is ∗-isomorph to the algebra
(1.85).
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Remark 11. The number |d| is occasionally called the algebraic dimension of
A. Its logarithm (in bits or nats) is called entropy of A.

It is often convenient to choose within a type a standard one. This can be
done by convention. A usual way is to require d1 ≥ · · · ≥ dm. One then calls
d standardly or decreasingly ordered. It opens the possibility to visualize the
types with Young tableaux (see [32]).

The following example is with |d| = 3. The standard representations are

{3}, {2, 1}, {1, 1, 1} .

The first one is the full algebra B(H), dimH = 3, the last one is a maximally
commutative subalgebra, while the middle one is B(H2) ⊕ C. (C stands for
the algebra over an 1-dimensional Hilbert space.) Their Young diagrams are
as follows: One may put (part of) Wedderburn’s theorem in the form:

Theorem 3. Every finite-dimensional ∗-subalgebra of an algebra B(H) is ∗-
isomorph to an algebra (1.85), i.e., it is of a certain type d.

The algebra (1.85) can be identified with a subalgebra of B(H) where

H = H1 ⊕ · · · ⊕ Hm , Hj = QjH , 1 =
∑

Qj , (1.87)

with projections Qj . The Qj sum up to 1, the identity operator of H. In
the course of constructing Bd, the unit element 1j ∈ B(Hj) is mapped onto
the projection Qj ∈ B(H). (We may use alternatively both notations. 1j can
indicate a use “inside” the algebra, while Qj indicates a definite embedding
in a larger algebra.)

Let us restrict the trace over H to operators A = A1 + · · · + Am, Aj ∈
B(Hj). We get

trA =
∑

trj Aj , trj is the trace over Hj .

Notice dimH = tr1 = |d|. The restriction of the trace of H to Bd is called
the canonical trace of Bd.

Let us denote the canonical trace of Bd by trcan, and let us try to explain
the word canonical. The point of this extra notation is its “intrinsic” nature:
Let us think of trcan as a linear functional over Bd. It can be characterized
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by two properties: trcan is a positive integer valued at the projections P �= 0
of Bd, and it is the smallest with that property. It means that the canonical
trace is a type invariant. We can recover the canonical trace in every algebra
∗-isomorph to Bd.

There is yet another aspect to consider. The Lüders–von Neumann, or
projective measurements [33–35], are in one-to-one correspondence with the
partition of the identity (1.87) of H. We can associate

d = {d1, . . . , dm} , dj = rank(Qj) (1.88)

with the measurement. The average measurement result is given by a unital,
trace preserving, and completely positive map,14

A→ Φ(A) :=
∑

QjAQj , A ∈ B(H) . (1.89)

In the direct sum (1.85), the term B(Hj) can be identified with QjB(H)Qj ,
the algebra of all operators that can be written as QjAQj . Hence,

Bd1,...,dm
:=

⊕
QjB(H)Qj , dj = rank(Qj) . (1.90)

Φ maps B(H) onto Bd .

Remark 12. Φ is a completely positive unital map, which maps the algebra
onto a subalgebra, though it does not preserve multiplication: Generally
QABQ is not equal to QAQBQ with a projection Q. Several interesting
questions appear. For instance, which channels result after several applica-
tions of projective ones? The problem belongs to the theory of conditional
expectations.

The State Space of Bd

To shorten the notation, we shall write Ω(H) instead of Ω(B(H)). Let us now
examine the state space Ω(Bd), which is a subset of Ω(H). Indeed, a state ω
of Bd can be written as ω(A) = trωA and we conclude

trωA = trω
∑

QjAQj = tr
(∑

QjωQj

)
A

by (1.87). Hence, we can choose ω ∈ Bd and, after doing so, ω becomes
unique. In conclusion, Ω(Bd) ⊂ Ω(H) and

ω ∈ Ω(Bd) ⇔
∑

QjωQj = ω, (1.91)

for density operators ω ∈ Ω(H).

14 Complete positive maps respect the superposition principle in tensor products
[35, 36].
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A density operator ωj of B(Hj) can be identified with a density operator
on H supported by Hj = QjH. Equivalently, we have ωj(Qj) = 1 for the
corresponding states. These states form a face of Ω(H), and these faces are
orthogonal one to another. We get the convex combination

ω ∈ Ω(Bd) ⇔ ω =
m∑

j=1

pjωj , trQjωj = ωj(Qj) = 1 . (1.92)

The convex combination (1.92) is uniquely determined by ω, a consequence
of the orthogonality ωjωk = 0 if j �= k.

Theorem 4. The state space of Bd, embedded in Ω(H), dimH = |d|, is the
direct convex sum of the state spaces Ω(Hj) with dimHj = dj and dj ∈ d.

We see further: Φ defined in (1.89) maps Ω(H) onto Ω(Bd).
A picturesque description is in saying we have a simplex with m corners

and we “blow up”, for all j, the jth corner to the convex set Ω(Hj). Then
we perform the convex hull.

From (1.87), (1.92), and the structure of Bd, we find the pure (i.e., ex-
tremal) density operators by selecting j and a unit vector |ψ〉 ∈ Hj to be
P = |ψ〉〈ψ|. (We may also write π = P , but presently, we like to see the den-
sity operator of a pure state as a member of the projections. This double role
of rank one projectors is a feature of discrete type I von Neumann algebras.)
Let π be the state of Bd with density operator P . Just by insertion, we see

PAP = π(A)P for all A ∈ Bd . (1.93)

On the other hand, if for any projector P , there is a linear form π such
that (1.93) is valid, π must be a state and P its density operator. (Inserting
A = P , we find π(P ) = 1. Because PA†AP is positive, π(A†A) must be
positive. Hence, it follows from (1.93), if P is a projection P , π is a state.)
It is also not difficult to see that (1.93) requires P to be of rank one and π
is pure. We now have another criterion for pure states, which refers to the
algebra only.

Let A be ∗-isomorph to an algebra Bd. A state π of A is pure if and only if
there is a projection P such that (1.93) is valid for all A ∈ A. Then P is
the density operator of the pure state, or, in other terms, π = P .

The projections, which are density operators of pure states, enjoy a special
property, they are minimal. A projection P is minimal in an algebra, if from
P = P1 + P2 with Pj projections, it follows either P1 = P or P1 = 0.

It is quite simple to see P = |ψ〉〈ψ| for a minimal projection operator of
Bd and, hence, it is a density operator of a pure state. Therefore, in algebras
∗-isomorph to an algebra Bd, we can assert the following: A projection P of
A is minimal if and only if it is the density operator of a pure state of A.
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A further observation: Let A be of type d. There is a linear functional
over A, which attains the value 1 for all minimal projections. This linear form
is the canonical trace of A.

By slightly reformulating some concepts from Hilbert space, we have ob-
tained purely algebraic ones. This way of thinking will also dominate our
next issue.

Transition Probabilities for Pure States

We start again with Bd as a subalgebra of B(H) with dimH = |d|. Let us
consider some pure states πj of Bd. They can be represented by unit vectors,

πj(A) = 〈ψj , Aψj〉, πj ≡ Pj = |ψj〉〈ψj | . (1.94)

Let us agree, as usual, that

Pr(π1, π2) = Pr(π1, π2) = |〈ψ1, ψ2〉|2 (1.95)

is the transition probability. To obtain the same value for two pure states of
an algebra A ∗-isomorph to Bd, we reformulate (1.95) in an invariant way:
The right-hand side of (1.95) is the trace of π1π2. In Bd, the canonical trace
coincides with the trace over H. Hence, for a general algebra A, we have to
use the canonical trace. We get

Pr(π1, π2) = Pr(π1, π2) = trcanπ1π2 . (1.96)

Switching, for convenience, to the notation Pj = πj , we get P1P2P1 =
π1(P2)P1 by inserting A = P2 in (1.93) for π1. By taking the trace, we get
the expression (1.96) for the transition probability. Interchanging the indices,
we finally get

Pr(π1, π2) = Pr(π1, π2) = π1(P2) = π2(P1) . (1.97)

This and (1.96) express the transition probability for any two pure states of
an algebra A, ∗-isomorph to a finite-dimensional von Neumann algebra.

Our next aim is to prove

Pr(π1, π2) = inf
A>0

π1(A)π2(A
−1) , (1.98)

A is running through all invertible positive elements of A.
It suffices to prove the assertion for Bd. Relying on (1.94), we observe

|〈ψ1, ψ2〉|2 ≤ 〈A1/2ψ1, A
1/2ψ1〉 〈A−1/2ψ2, A

−1/2ψ2〉 .

Therefore, the left-hand side of (1.98) cannot be larger than the right one.
It remains to ask, whether the asserted infimum can be reached. For this
purpose, we set
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As = s1 + P2 , A−1
s =

1
s
1− 1

s(1 + s)
P2 .

As is positive for s > 0. We find

π1(As) = s+ Pr(π1, π2) , π2(A
−1
s ) =

1
s
− 1
s(1 + s)

= (1 + s)−1 ,

and it follows
lim

s→+0
π1(As)π2(A

−1
s ) = Pr(π1, π2),

which proves (1.98).
In [37], a similar inequality is reported:

2|〈ψ1, ψ2〉| = inf
A>0

〈ψ1, Aψ1〉+ 〈ψ2, A
−1ψ2〉,

with A varying over all invertible positive operators on a Hilbert space. The
equation remains valid for pairs of pure states in a finite ∗-subalgebra A of
B(H). The slight extension of the inequality reads

2
√

Pr(π1, π2) = inf
0<A∈A

π1(A) + π2(A
−1) . (1.99)

To prove it, we write down the inequality

0 ≤
[
t
√
π1(A)− t−1

√
π2(A−1)

]2
,

t a positive number. We get

2
√
π1(A)π2(A−1) ≤ t2π1(A) + t−2π2(A

−1)

and, by (1.98), the right-hand side of (1.99) is not less than the left one.
Adjusting the operators As above to Bs = t2sAs in such a way that π1(Bs) =
π2(A

−1), then

2
√
π1(Bs)π2(B

−1
s ) = π1(Bs) + π2(B

−1
s ) .

Performing the limit s→ 0 as in the proof of (1.98) shows that the asserted
infimum can be approached arbitrarily well.

Last but not least, we convince ourselves that the transition probability
between pure states is already fixed by the convex structure of Ω(A) respec-
tively of Ω(A).

We prove it for Ω(A). Let l be a real linear form over the Hermitian
operators of A, such that for all density operators ω, one has 0 ≤ l(ω) ≤ 1.
Then l(A) ≥ 0 for all positive operators A. Now assume l(P ) = 1 for a
minimal projection. Combining both assumptions, we find l(1A) = 1. Hence,
l is a pure state π of A. If P ′ is another minimal projection, i.e., an extremal
element of Ω(A), we can calculate the transition probability l(P ′) = π(P ′).
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The result implies the following: Our state spaces are rigid: If a linear
map Φ,

Φ : A → A ,

maps Ω(A) one-to-one onto itself, it must preserve the transition probabilities
between pure density operators.

In the particular case A = B(H), the map Φ must be a Wigner symmetry.
A useful reformulation of this statement reads as follows: Let Φ1 and Φ2

denote invertible linear maps from B(H) onto B(H). Assume Ω(H) is mapped
by both maps onto the same set of operators. Then there is a unitary or an
anti-unitary V such that

Φ2(X) = Φ1(V XV ∗) for all X ∈ B(H) .

Indeed, Φ−1
1 Φ2 must be a Wigner symmetry.

Remark 13. Mielnik has defined a “transition probability” between extremal
states of a compact convex set K in this way. Let P and P ′ be two extremal
points of K. The “probability” of the transition P → P ′ is defined to be
inf l(P ′), where l runs through all real affine functionals on K with values
between 0 and 1 and with l(P ) = 1. Indeed, for Ω(A), the procedure gives
the correct transition probability as shown above.

1.3.4 All Subsystems for dim H < ∞

Here, we are interested in Wedderburn’s description, of the ∗-subalgebras of
B(H), dimH < ∞ [24, 38]. In short, such a subalgebra is ∗-isomorph to a
certain algebra Bd.

We change our notations toward its use in quantum information. We think
of a quantum system with algebra BA, owned by some person, say Alice. We
may assume the algebra BA to be a unital ∗-subalgebra of a larger algebra
B(HAB). The type of BA is the not ordered list dA = {dA

1 , . . . , d
A
m}. Alice

is allowed to operate freely within her subsystem, which is also called the
A-system.

Theorem 5. Let BA be a unital ∗-subalgebra of B(HAB) of type dA. Then,
there is a decomposition

HAB = H1 ⊕ · · · ⊕ Hm , Hj = HA
j ⊗HB

j , (1.100)

dA
j = dimHA

j , dB
j = dimHB

j ,

such that
BA =

(
B(HA

1 )⊗ 1B
1

)
⊕ · · · ⊕

(
B(HA

m)⊗ 1B
m

)
. (1.101)

Equally well, we may represent BA as a diagonal block matrix with diagonal
blocks B(HA

j )⊗ 1B
j .
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In the theorem, we denote by 1A
j the identity operator of HA

j and by 1B
j

the one of HB
j . Therefore, 1A

j ⊗1B
j is equal to 1j , the identity operator of Hj .

The latter can be identified with the projection Qj projecting H onto Hj ,
i.e., 1j = Qj . Equations (1.100) and (1.101) describe how BdA is embedded
into B(HAB) to become BA by the embedding ∗-isomorphism

A1 + · · ·+Am ↔ A1 ⊗ 11 + · · ·+Am ⊗ 1m , Aj ∈ B(HA
j ) . (1.102)

Now we can see, why, by identifying BA as a subsystem of B(HAB), a
second subsystem, called “Bob’s system”, appears quite naturally. It consists
of those operators of B(HAB), which can be executed independently of Alice’s
actions. These operators must commute with those of the A-system. Hence,
all of them15 constitute Bob’s algebra BB. Therefore, Bob’s algebra is the
commutant of BA in B(HAB). By (1.101), we see

BB := (BA)′ =
(
1A

1 ⊗ B(HB
1 )
)
⊕ · · · ⊕

(
1A

m ⊗ B(HB
m)
)
. (1.103)

Further, we can find the center of BA, respectively, of BB. The center describes
the actions that are allowed to both, Alice and Bob. These operators behave
classical for them. We get

BA ∩ BB = CQ1 + · · ·+ CQm , Qj = 1A
j ⊗ 1B

j = 1j . (1.104)

The type of the commutant consists of m-times the number one.
The types of BA and of BB are dA = {dA

1 , . . . , d
A
m} and dB = {dB

1 , . . . , d
B
m},

respectively. In general, neither one can be assumed decreasingly ordered. No-
tice

dimHAB =
∑

dA
j d

B
j .

Let us denote by BAB the subalgebra generated by BA and BB. Equiva-
lently, BAB is the smallest subalgebra of B(H) containing BA and BB,

BAB = B(H1)⊕ · · · ⊕ B(Hm) = Q1B(H)Q1 + · · ·+QmB(H)Qm . (1.105)

The fact that BAB is generated in a larger algebra by the algebras BA and
BB can be expressed also by BAB = BA ∨ BB. The type of BAB is

dAB := {dA
1 d

B
1 , . . . d

A
md

B
m} .

As long as BAB is not considered itself as a subsystem of a larger one, we are
allowed to write BAB = BdAB .

Embedding and Partial Trace

Let us stick to the just introduced subalgebras of B(HAB), namely BA, BB,
BAB, and C = BA ∩ BB.
15 We ignore that there may be further restrictions to Bob.



34 A. Uhlmann and B. Crell

If ωAB is a state of BAB, its restriction to BA is a state ωA of BA. The
restriction map lets fall down any functional of BAB to BA. After its applica-
tion, we have obtained ωA from ωAB and all what has changed is as follows:
Only arguments from BA will be allowed for ωA.

The partial trace,16 ωAB → ωA , concerns the involved density operators.
It is a map from BAB to BA. For its definition and for later use, we need
the canonical traces of BA and BB, which we now denote by trA and trB,
respectively. It is

trAωAX = ωAB(X) ≡ trωABX , X ∈ BA . (1.106)

Remark 14. The algebra BAB is of the form (1.90) and (1.85). Therefore, its
canonical trace trAB is the canonical trace over B(H), i.e., it is just the trace
over H.

We read (1.106) as follows: The right-hand side becomes a linear form
over BA. Every linear functional over BA can be uniquely written by the help
of the canonical trace as done at the left-hand side. This defines the partial
trace

ωAB → ωA := trBωAB (1.107)

from BAB to BA. The partial trace is dual to the restriction map.

The algebra BAB consists of all operators

Z =
m∑

j=1

XjYj =
m∑

j=1

(Aj ⊗ 1B
j ) (1A

j ⊗Bj), (1.108)

with
Aj ∈ B(HA

j ), Bj ∈ B(HB
j ) .

This follows from (1.100) and (1.101). Now

trYj = tr (1A
j ⊗Bj) = dA

j trBj = dA
j trBYj . (1.109)

The dimensional factors point to the main difference between the canonical
trace of BA and of the induced trace, which is the trace of H applied to the
operators of the subalgebra BA. All together, we get the partial trace of the
operator (1.108),

trB Z =
∑(

dA
j

)−1
(trYj)Xj =

∑
Xj trBYj . (1.110)

An important conclusion is

trBXZ = XtrBZ , trB ZX = (trBZ)X , X ∈ BA . (1.111)

Similar to trB, one treats the partial trace trA. One can check
16 The partial trace is a particular conditional expectation.
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trB trA = trA trB = trAB . (1.112)

Because trAB projects an operator of BAB into both BA and BB, it projects
onto the center, C = BA∩BB, of BAB. By inspection, we identify (1.112) with
the partial trace of BAB onto its center.

The ansatz (1.106) applies also to the partial trace from B(HAB) to BAB.
Because the latter is the commutant of the center C = BA ∩ BB, we have

trA∩B(Z) =
∑

QjZQj , BA ∩ BB =
∑

QjC , (1.113)

see (1.87) and (1.89), where the map has been called Φ because at this occa-
sion, the partial trace was not yet defined.

1.4 Transition Probability, Fidelity, and Bures Distance

The aim is to define transition probabilities [39–43] between two states of a
quantum system, say A, by operating in larger quantum systems. We call it
Pr(ρ, ω) or, with density operators, Pr(ρ, ω).

The notation for the fidelity, F(ρ, ω), used here is that of Nielsen and
Chuang17 [36], i.e., it is the square root of the transition probability,

F(ρ, ω) :=
√

Pr(ρ, ω) . (1.114)

This quantity is also denoted by square-root fidelity or by overlap. An analo-
gous quantity between two probability measures is known as Kakutani mean
[44], and, for probability vectors, as Bhattacharyya coefficient. Occasionally,
the latter name is also used in the quantum case.

There is a related extension of the Fubini–Study distance to the Bures one
[45]. The Bures distance distB(ρ, ω) is an inner distance in the set of positive
linear functionals, or, in finite-dimensions equivalently, in the set of positive
operators. The Bures distance is a quantum version of the Fisher distance
[46].

There is a Riemannian metric, the Bures metric, belonging to the Bu-
res distance [47]. It extends the Fubini–Study metric to general (i.e., mixed)
states. It also extends the Fisher metric, originally defined for spaces of prob-
ability measures, to quantum theory. (However, there is a large class of rea-
sonable quantum versions of the Fisher metric, discovered by Petz [48, 49].)

Below we shall define transition probability and related quantities “oper-
ationally”. Later we shall discuss several possibilities to get them “intrinsi-
cally”, without leaving a given quantum system [39–43].

From the mathematical point of view, there are some quite useful tricks
in handling two positive operators in general position.

17 There are also quite different expressions called fidelity.
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1.4.1 Purification

Purification is a tool to extend properties of pure states to general ones.
It lives from the fact that given a state of a quantum system A, say ωA,
there are pure states in sufficiently larger systems, the restriction of which
to the A-system coincides with ωA. The same terminology is used for the
corresponding density operators. Of special interest is the case of a larger
system that purifies all states of the A-system.

We can lift any state of a quantum system to every larger system. We can
require that a pure state is lifted to a pure state: Let A1 ⊂ A2 ⊂ B(H) and
π1 a pure state of A1 with density operator P1. Being a minimal projection
in A1, P1 may not be minimal in A2. But then, we can write P1 as a sum
of minimal projections of A2. If P2 is one of them and π2 the corresponding
pure state of A2, then π2 is a pure lift of π1.

As a matter of fact, every state ω2 satisfying ω2(P1) = 1 is a lift of π1 to
A2. These states exhaust all lifts of π1 to A2. They constitute a face of the
state space of A2.

Assume the state ω1 of A1 is written as a convex combination of pure
states. After lifting them to pure states of A2, we get a convex combination,
which extends ω1 to A2.

Generally, there is a great freedom in extending states of a quantum
system to a larger quantum system.

The most important case is the purification of the states of B(H) or,
equivalently, of Ω(H), well described in [36, 50–52], and in other text books on
quantum information theory. It works by embedding B(H) as the subalgebra
B(H)⊗ 1′ into a bipartite system B(H⊗H′), provided d = dimH ≤ dimH′.
Given ω ∈ Ω(H), a unit vector ψ ∈ H ⊗ H′ purifys ω, and π = |ψ〉〈ψ| is a
purification of ω, if

〈ψ, (X ⊗ 1′)ψ〉 = trXω for all X ∈ B(H) (1.115)

or, equivalently,
ω(X) = π(X ⊗ 1′) ≡ trπ(X ⊗ 1′) . (1.116)

To get a suitable ψ, one chooses d ortho-normal vectors |j〉′ in H′ and a basis
|j〉 of eigenvectors of ω. Now

|ψ〉 =
∑

λ1/2|j〉 ⊗ |j〉′ with ω|j〉 = λj |j〉 (1.117)

purifies ω. Indeed,

〈ψ, (X ⊗ 1′)ψ〉 =
∑

λj〈j|X|j〉 = trXω .

Now let A be a unital ∗-subalgebra of B(H) and ωA one of its states. We
have already seen that we can lift ωA to a state ω of B(H). With the density
operator ω of ω, we now proceed as above.
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1.4.2 Transition Probability and Fidelity

Let A be a unital ∗-subalgebra of an algebra B(H) with finite-dimensional
Hilbert space H. Let ωA

1 and ωA
2 denote the two states of A and ωA

1 and ωA
2

denote their density operators.
The task is to prepare ω2, if the state of our system is ω1. To do so, one

thinks of purifications πj of our ωA
j in a larger quantum system in which

A is embedded. One then tests, in the larger system, whether π2 is true.
If the answer of the test is “yes”, then π2 and, hence, ωA

2 is prepared. The
probability of success is Pr(π1, π2) as defined in (1.95), (1.96), and (1.97).

One now asks for optimality of the described procedure, i.e., one looks for
a projective measurement in a larger system that prepares a purification of
ωA

2 with maximal probability.
This maximal possible probability for preparing ωA

2 given ωA
1 is called the

transition probability from ωA
1 to ωA

2 or, as this quantity is symmetric in its
entries, the transition probability of the pair {ωA

1 , ω
A
2 }. The definition applies

to any unital C∗-algebra and, formally, to any unital ∗-algebra [39, 53, 54].
The definition can be rephrased

Pr(ωA
1 , ω

A
2 ) := sup Pr(π1, π2) , (1.118)

where π1, π2 is running through all simultaneous purifications of ωA
1 , ωA

2 . We
also use the density operator notation

Pr(ωA
1 , ω

A
2 ) ≡ Pr(ωA

1 , ω
A
2 ) .

In almost the same way, we define the fidelity by

F(ω1, ω2) = sup |〈ψ1, ψ2〉|, (1.119)

where ψ1, ψ2 run through all simultaneous purifications of ω1, ω2 in some
B(H). Though we do not include all possible purifications (by using only
“full” algebras), the relation (1.114) remains valid.

Remark 15. Let ω1 and ω2 be two states of a unital C∗-algebra A and ν one
of its linear functionals. If and only if

|ν(A†B)|2 ≤ ω1(A
†A)ω2(B

†B), (1.120)

for all A,B ∈ A, there is an embedding Ψ in an algebra B(H) such that there
are purifying vectors ψ1, ψ2 satisfying

ν(A) = 〈ψ1, Ψ(A)ψ2〉 , A ∈ A . (1.121)

This relation implies
|ν(1)|2 ≤ Pr(ω1, ω2) . (1.122)

Now the definition above can be rephrased: The transition probability is the
sup of |ν(1)|2 with ν running through all linear forms satisfying (1.121).
There exist linear functionals ν satisfying (1.120) with equality in (1.122).
Their structure and eventual uniqueness has been investigated by Alberti
[55–57].
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The Bures Distance

For the next term, the Bures distance [45], it is necessary, not to insist in
normalization of the vectors and not to require the trace one condition for
the density operators in (1.119). Remembering (1.28) and (1.29), one defines
the Bures distance by

distB(ω1, ω2) = sup distFS(π1, π2) = sup ‖ ψ2 − ψ1 ‖, (1.123)

where the sup is running through all simultaneous purifications of ω1 and ω2.
Because of (1.119), this comes down to

distB(ω1, ω2) =
√

trω1 + trω2 − 2F(ω1, ω2) . (1.124)

Rewritten for two density operators, it becomes

distB(ω1, ω2) =
√

2− 2
√

Pr(ω1, ω2), trωj = 1 .

If only curves entirely within the density operators are allowed in opti-
mizing for the shortest path, we get a further variant of the Bures distance,
namely

DistB(ω1, ω2) = arccos
√

Pr(ω1, ω2), (1.125)

in complete analogy to the discussion of the Fubini–Study case.
What remains is to express of (1.118) or (1.119) in a more explicit way.

The dangerous thing in these definitions is the word “all”. How to control all
possible purifications of every embedding in suitable larger quantum systems?
The answer is in a saturation property: One cannot do better in (1.118) than
by the squared algebraic dimension of A for the purifying system.

1.4.3 Optimization

Let A = Bd with d = |d| as in (1.85) and (1.87). Hence, up to a slight change
in notation, we have

A = B(HA
1 )⊕ B(HA

2 )⊕ · · · ⊕ B(HA
m) , (1.126)

HA = HA
1 ⊕ · · · ⊕ HA

m .

A ⊂ B(HA) is an embedding with the least possible Hilbert space dimension.
(In contrast to (1.101), the general case.) Our working space will be

HAB = HA ⊗HB , dimHB = dimHA = d . (1.127)

The production of purifying vectors is simplified, first, by selecting a maxi-
mally entangled vector
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|ϕ〉 =
d∑

j=1

|jj〉 ≡
∑

|j〉A ⊗ |j〉B (1.128)

of length d. {|j〉A} and {|j〉B} are bases of HA and HB, respectively. For any
X ∈ B(HA), we get

(X ⊗ 1A)|ϕ〉 =
∑

X|j〉A ⊗ |j〉B .

Bases are linearly independent. Hence if the right-hand side is zero, then
X = 0. Because the dimension of B(HA), as a linear space, is equal to the
dimension of the Hilbert space (1.127), every vector ψ in HAB has a unique
representation (X ⊗ 1)|ϕ〉. One computes for X1,X2 ∈ B(HA) the partial
trace

ψi = (Xi ⊗ 1)|ϕ〉 ⇒ trB|ψ1〉〈ψ2| = X1X
†
2 (1.129)

because we have to trace out the B-system in
∑

X1(|j〉A〈k|)X†
2 ⊗ (|j〉B〈k|) .

Our choice of A implies Ω(A) ⊂ Ω(HA), see (1.91) and (1.92). Therefore,
we can apply (1.129) above to the density operators of the A-system. Now
let ωA be a density or just a positive operator from A. It is convenient to
call an operator W ∈ A an amplitude of ωA if ωA = WW †. (W ⊗ 1)|ϕ〉 is a
purifying vector for ωA, if W is an amplitude of ωA and vice versa.

There are many amplitudes of ωA, and the change from one to another
one can be described18 by gauge transformations W → W ′ = WU with
unitary U ∈ A. The gauge transformations respect ωA as a gauge invariant.

Let us return to our problem with two density operators, ωA
1 and ωA

2 , and
two purifying vectors, ψ1 and ψ2. There are two operators W1, W2 in our A
satisfying

ψj = (Wj ⊗ 1)ϕ , ωA
j = WjW

†
j . (1.130)

With these amplitudes, we have

〈ψ1, ψ2〉 = 〈(W1 ⊗ 1)ϕ, (W2 ⊗ 1)ϕ〉 = trW †
1W2 . (1.131)

Gauging ψ2 → ψ′
2 by W2 →W ′

2 = W2U , we see

〈ψ1, ψ
′
2〉 = trW †

1W2U .

Let us stress that we fix W1 and vary only W2 in this relation. Hence

F (ωA
1 , ω

A
2 ) = sup

ψ′
|〈ψ1, ψ

′
2〉| = sup

U∈A
|trW †

1W2U | ,

18 Due to our finiteness assumptions.
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provided one cannot get better results in higher dimensional purifications.
But this is not the case, as one can prove. (Essentially, this is because the
largest dimension of a cyclic representation of B(HA) is of dimension d2.)

It is |trBU | ≤ trB in case B ≥ 0, and U is unitary. Hence, we are done if
W †

1W2 ≥ 0 can be reached. This is possible because the polar decomposition
theorem is valid in A (and, indeed, in every von Neumann algebra). In other
words, we can choose a pair of amplitudes such that

F (ωA
1 , ω

B
2 ) = trW †

1W2 , W †
1W2 ≥ 0 . (1.132)

Let us restate (1.132) to respect ∗-isomorphisms. If A is any (finite-dimen-
sional) ∗-subalgebra of any B(H), we have to understand the trace in (1.132)
as the canonical trace. (Remember: Only for the algebras Bd with dimH = d,
the canonical trace coincides with the trace of H.) Whenever for two density
operators of A

ωA
1 = W1W

†
1 , ωA

2 = W2W
†
2 , W †

1W2 ≥ 0 ,

we call the pair of amplitudes W1,W2 parallel. Parallelity implies

F(ωA
1 , ω

A
2 ) = trcanW †

1W2 , Pr(ωA
1 , ω

A
2 ) = (trcanW †

1W2)2 . (1.133)

1.4.4 Why the Bures Distance Is a Distance

Before proceeding along the main line, the triangle inequality should be
proved. Inserting (1.132) into (1.124) yields

distB(ωA
1 , ω

A
2 ) =

√
trW1W

†
1 + trW2W

†
2 − 2trW †

1W2 .

Now observe that the traces of WW † and W †W are equal. Further, remember
that W †

1W2 is assumed to be positive and, therefore, hermitian:

W †
1W2 = W †

2W1 . (1.134)

Altogether we proved that if W1, W2 are parallel amplitudes, then

distB(ωA
1 , ω

A
2 ) =

√
trcan (W1 −W2)†(W1 −W2) , (1.135)

and for two arbitrary amplitudes, the left-hand side cannot be larger than
the right one. The latter can also be rewritten ‖W2 −W1 ‖2.

Consider now three positive operators, ωA
1 , ωA

2 , and ωA
3 . Starting with

W2, we can choose W1 and W3, such that the pairs W2,W1 and W2,W3 are
parallel amplitudes. This allows to convert the triangle inequality

‖W1 −W2 ‖2 + ‖W2 −W3 ‖2≥‖W1 −W3 ‖2
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into
distB(ωA

1 , ω
A
2 ) + distB(ωA

2 , ω
A
3 ) ≥‖W1 −W3 ‖2

and the last term cannot be smaller than the Bures distance. Hence,

distB(ωA
1 , ω

A
2 ) + distB(ωA

2 , ω
A
3 ) ≥ distB(ωA

1 , ω
A
3 ) . (1.136)

It is instructive to rewrite our finding with purifying vectors. We extend
our notation and call a pair of purifying vectors parallel if the amplitudes in
(1.130), that is in ψj = (Wj ⊗ 1)ϕ, are parallel ones. We can express (1.135)
by

distB(ωA
1 , ω

A
2 ) ≤‖ ψ2 − ψ1 ‖, (1.137)

for all pairs of purifying vectors of ωA
1 , ωA

2 . Equality holds for pairs of parallel
purifying vectors.

Some Geometric Properties of the Bures Distance

The Bures distance is an inner one: There are short geodesic arcs with length
equal to the Bures distance of their end points. Given ωA

0 , ω
A
1 , we chose the

parallel amplitudes W0,W1. Then any pair of amplitudes belonging to the
arc

t →Wt = (1− t)W0 + tW1 , 0 ≤ t ≤ 1 , (1.138)

is a parallel pair. Exactly as in (1.10), we get

distB(ωA
s , ω

A
t ) =‖Wt −Ws ‖2 , ωA

s = WsW
†
s . (1.139)

Bures did not ask wether his distance is based on a Riemannian metric. He
was interested in cases with infinite tensor products of von Neumann algebras,
and the theory of infinite-dimensional manifolds had not been developed. But
for finite-dimension, the question is tempting.

There is, indeed, a Riemannian metric reproducing the Bures distance.
Its line element is given by

(
dsB

dt

)2

= trcanG2ωA =
1
2
trcan ω̇AG , (1.140)

whenever there is a solution of

ω̇A = ωAG+GωA , G = G† . (1.141)

For invertible positive operators ωA, there is a unique solution of (1.141). At
the boundary, where the rank is smaller than the Hilbert space dimension, the
existence of G depends on the direction of the tangent ω̇A. For dimH ≥ 3,
there are directions for which the metric becomes singular (J. Dittmann,
Private Communication).
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However, for invertible ωA, the metric behaves regularly. Let

t→ ωA
t = WtW

†
t , |ψt〉 = (Wt ⊗ 1B)|ϕ〉 , (1.142)

be an arc of invertible density operators. Then the curve t → Wt of the
amplitudes is called parallel, if

Ẇ †
t Wt = W †

t Ẇt . (1.143)

By straightforward computation, one proves the equivalence of (1.141) with
the condition

Ẇt = GtWt , G†
t = Gt . (1.144)

Now one easily gets

t→Wt parallel, ⇒
(

dsB

dt

)2

= trcan ẆẆ † . (1.145)

It is an easy, nice exercise to compute the Bures distance (1.139) by (1.145)
to establish that the Bures distance can be gained from the metric (1.140).

After switching to the purifying arc |ψt〉 = (Wt⊗1B)|ϕ〉, another form of
the results appears: The Hilbert space length of a purifying lift t → |ψt〉 of
t → ωA

t is never less than its Bures length. Equality is reached exactly with
parallel amplitudes (1.143) in (1.142).

The Extended Mandelstam–Tamm Inequality

An application is the extended Mandelstam–Tamm inequality. Let

t→ ωt , 0 ≤ t ≤ 1 , (1.146)

be a solution of time-dependent von Neumann–Schrödinger equation

i�ω̇ = [H,ω] , H = Ht . (1.147)

Then one can prove
∫ 1

0

√
tr(ωH2)− (trωH)2 ≥ � arccos F(ω1, ω0) , (1.148)

see [58]. (One has to look for a lift t→Wt satisfying the differential parallel
condition Ẇ †W = W †Ẇ and a Schrödinger equation with a Hamiltonian
W → HW +WH̃, where t→ H̃t has to be chosen suitably.)

Using this, one can get a differential form of (1.148):

tr(ωH2)− (trωH)2 ≥ �

2
trGω̇ . (1.149)

One may compare this inequality with the quantum Rao–Cramers in-
equality, which, however, plays its role in a quite different context (hypothesis
testing and other questions of mathematical statistics). A recent overview,
discussing these relationships, can be found in I. Bengtsson’s paper [59]. An-
other question has been discussed by A. Ericsson [60].
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1.4.5 Expressions for Fidelity and Transition Probability

Now we return to (1.132) and (1.133) to benefit from the positivity of W †
1W2

for parallel amplitudes. It holds

(W †
1W2)2 = W †

1W2W
†
2W1 = W †

1ω
A
2 W1 .

There is a polar decomposition

W1W
†
1 = ωA

1 , W1 = (ωA
1 )1/2U1,

with a unitary U1. Putting things together yields

(W †
1W2)2 = U−1

1 (ωA
1 )1/2ωA

2 (ωA
1 )1/2U1 . (1.150)

We can take the positive root and obtain

W †
1W2 = U−1

1

√
(ωA

1 )1/2ωA
2 (ωA

1 )1/2 U1 . (1.151)

The canonical trace of (1.151) yields the fidelity,

F(ωA
1 , ω

A
2 ) = trcan

√
(ωA

1 )1/2ωA
2 (ωA

1 )1/2 . (1.152)

Its square is the transition probability.
As an application, we consider direct products. With two pairs, ω1, ω2 and

ρ1, ρ2 of density operators in two different Hilbert spaces, one can perform
their direct products ωj ⊗ ρj . The structure of the expression (1.152) allows
to conclude

Pr(ω1 ⊗ ρ1, ω2 ⊗ ρ2) = Pr(ω1, ω2) Pr(ρ1, ρ2) . (1.153)

In what follows, we assume invertible positive operators, though the re-
sults do not depend on that assumption. As above, W1,W2 are parallel am-
plitudes of ωA

1 , ω
A
2 . We define a positive gauge invariant, K,

W †
1W2 > 0 ⇔ W2 = KW1 , K > 0 . (1.154)

Indeed, W †
1W2 = W †

1KW1 proves K > 0 equivalent to parallelity. Now

K = W2W
−1
1 > 0 , K−1 = W1W

−1
2 > 0 , (1.155)

and we conclude the existence of K ∈ A such that

trcanωA
1 K = trcanW †

1W2 = trcanωA
2 K

−1 . (1.156)

But trcanW †
1W2 is the fidelity, and with our K, we have

F(ωA
1 , ω

A
2 ) = trcanωA

1 K = trcanωA
2 K

−1 . (1.157)
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For a pair ψ1, ψ2 of parallel purifications and for every positive C ∈ B(HA ⊗
HB), we know from (1.99)

F(ωA
1 , ω

A
2 ) = |〈ψ1, ψ2〉| ≤ (1/2)(〈ψ1, Cψ1〉+ 〈ψ2, C

−1ψ2〉) .

Inserting C = X ⊗ 1B, it becomes clear that the right-hand side cannot
become smaller than

1
2

inf
X>0

(trω1X + trω2X
−1) , X ∈ A .

The particular case X = K proves

F(ωA
1 , ω

A
2 ) =

1
2

inf
X>0

(
trωA

1 X + trωA
2 X

−1
)
. (1.158)

Let us reformulate (1.158) to change from density operators to states. Finally,
there is no reference on any bipartite structure. Let A be a ∗-subalgebra of
B(H), and ω and ρ two of its states or positive linear forms. Then

F(ω, ρ) =
1
2

inf
0<X∈A

ω(X) + ρ(X−1) , (1.159)

Pr(ω, ρ) = inf
0<X∈A

ω(X) ρ(X−1) . (1.160)

Thanks to the work of Araki and Raggio [61] and Alberti [62], the last two
assertions are known to be true for any pair of states of any unital C∗-algebra.

Super-Additivity

For all decompositions

ω =
∑

ωj , ρ =
∑

ρj , (1.161)

of positive operators, the inequality

F(ω, ρ) ≥
∑

j

F(ωj , ρj) (1.162)

is valid. The inequality expresses super-additivity of the fidelity.
For simplicity, we prove super-additivity assuming ω and ρ invertible and

choose K ∈ A satisfying

F(ω, ρ) = trcanωK = trcanρK−1

as in (1.156) and (1.157). We now have

2F(ω, ρ) =
∑

trcanωjK +
∑

trcanρjK
−1 .
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The proof terminates by estimating the right part by (1.158). This is the
finite-dimensional case. (For von Neumann and C∗-algebras one returns to
positive linear forms for which super-additivity of the fidelity can be proved
equally well.)

Let us mention how (1.161) implies joint concavity. Because of

F(aω, bρ) =
√
abF(ω, ρ) , a, b ∈ IR+, (1.163)

it follows from (1.161) for convex sums of equal length

F

⎛

⎝
∑

j

pjωj ,
∑

k

qkρk

⎞

⎠ ≥
∑

j

√
pjqj F(ωj , ρj) . (1.164)

From (1.152), one can conclude the following: Equality holds in (1.164), if
for j �= k it holds ωjρk = 0. Similar (indeed equivalent) statements are true
for (1.159) and (1.160).

Monotonicity

Choi [63] proved for positive unital maps

Ψ(A−1) ≥ Ψ(A)−1 if A ≥ 0 . (1.165)

In the case of a 2-positive and unital Ψ , the conclusion
(
A C
C† B

)
≥ 0 ⇒

(
Ψ(A) Ψ(C)
Ψ(C†) Ψ(B)

)
≥ 0 (1.166)

comes simply from the very definition of 2-positivity. Then, (1.165) follows
with B = A−1, C = 1, and unitality, Ψ(1) = 1. However, according to Choi,
in the particular case C ≥ 0, just positivity and unitality are sufficient for
the validity of (1.166). Therefore, (1.165) is valid for positive unital maps.

Let us apply (1.165) to the fidelity. To this end, we denote by Φ the map
dual to Ψ ,

trXΨ(Y ) = trΦ(X)Y . (1.167)

Ψ is positive if Φ is positive. Φ is trace preserving if Ψ is unital. Not every
positive operator might be of the form Ψ(X) with positive X. Therefore, by
(1.158) or (1.159),

F(ω, ρ) ≤ 1
2

inf
0<X∈A

trcanΨ(X)ω + trcanΨ(X)−1ρ .

We can replace Ψ(X)−1 by the larger Ψ(X−1) in virtue of (1.165) to get an
even larger right-hand side:

F(ω, ρ) ≤ 1
2

inf
0<X∈A

trcanΨ(X)ω + trcanΨ(X−1)ρ .
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Now we apply duality, (1.167), and obtain

F(ω, ρ) ≤ 1
2

inf
0<X∈A

trcanXΦ(ω) + trcanX−1Φ(ρ) .

The right-hand side is an expression for the fidelity of the pair Φ(ω), Φ(ρ),
and the proof of the monotonicity property is done:

Let Φ be positive and trace preserving. Then

F(ω1, ω2) ≤ F (Φ(ω1), Φ(ω2)) . (1.168)

As a consequence, trace preserving positive maps are Bures-contracting,

distB(ω1, ω2) ≥ distB(Φ(ω1), Φ(ω2)) . (1.169)

Density operators (and states) become closer one to another under the action
of these maps.

Remark 16. It is well known that there are many Riemannian metrics in a
state space Ω(H) which are monotone decreasing with respect to channels,
i.e., with respect to completely positive and trace preserving maps.19 Thanks
to the work of Petz [48, 49] they can be constructed with the help of certain
operator means. Kubo and Ando [64] enumerated all operator means by op-
erator monotone functions. Another, but much related story is the question
for functions Pr ′(. , .), depending on two states, which are

(a) monotone increasing with respect to channels and which
(b) coincide with the transition probability for pure states.

Some of them are related to distances, i.e., inserting in distB the square root
of Pr ′ for F returns a distance. Most of them, however, are not related to any
distance. In any case, only the transition probability (1.118) is “operational”
defined. Just by this very definition, one finds, for pairs of density operators,

Pr(ω, ρ) ≥ Pr ′(ω, ρ), (1.170)

for all Pr′ satisfying the two conditions (a) and (b). A nice example is

Pr(ω, ρ) ≥ trω1−sρs , 0 < s < 1 . (1.171)

Indeed, the right-hand side fulfills (a) and (b) (see [65], where one can also
find a more “direct” proof of (1.171)).

19 Though their geodesics and distances are mostly unknown.
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1.4.6 Estimates and a “Hidden Symmetry”

We use the notation

char(A) = all roots of the characteristic equation of A . (1.172)

Clearly, this is the eigenvalue, counted with the appropriate multiplicity, if
A is diagonalizable. Because of

ω
1/2
1

(
ω

1/2
1 ω2ω

1/2
1

)
ω
−1/2
1 = ω1ω2,

one concludes
char

(
ω

1/2
1 ω2ω

1/2
1

)
= char (ω1ω2) . (1.173)

An Estimate

Denoting the characteristic values of (1.173) by λ1, λ2, . . . , we get

Pr(ω1, ω2) =
(∑√

λj

)2

. (1.174)

The sum of the λj is the trace of ω1ω2. Hence

Pr(ω1, ω2) = trω1ω2 + 2
∑

j<k

√
λjλk.

We write 2r for the last term and use

√
r2 =

⎛

⎝
∑

j<k

λjλk + . . .

⎞

⎠

1/2

.

The dots abbreviate some non-negative terms. The other term in the sum is
the second elementary symmetric function of the characteristic values λk of
ω1ω2. Expressing the latter by traces yields

Pr(ω1, ω2) ≥ trω1ω2 +
√

2
√

(trω1ω2)2 − tr(ω1ω2)2, (1.175)

with equality for rank(ω1ω2) ≤ 2. For dimH = 3, closer inspection produces

Pr(ρ, ω) = tr ρω +
√

2
√

(tr ρω)2 − tr(ρωρω) + 4F (ρ, ω)
√

det(ρω) .
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One Qubit, dim H = 2

In the 1-qubit case, (1.175) becomes an equality. λ1λ2 is the determinant of
ω1ω2. Thus,

Pr(ω1, ω2) = trω1ω2 + 2
√

detω1 detω2 . (1.176)

Let us represent our density matrices by

ω1 =
1
2

(
1 +

∑
xnσn

)
, ω2 =

1
2

(
1 +

∑
ynσn

)
, (1.177)

and let us define a new coordinate by

x4 := 2
√

detω1 , y4 := 2
√

detω2 . (1.178)

We have now placed the density operators on the upper 3-hemisphere,

x2
1 + · · ·+ x2

4 = y2
1 + · · ·+ y2

4 = 1, (1.179)

with x4 ≥ 0, y4 ≥ 0 . The transition probability becomes

Pr(ω1, ω2) =
1
2

⎛

⎝1 +
4∑

j=1

xjyj

⎞

⎠ . (1.180)

A “Hidden Symmetry”

Remember first the equality (1.173) for the characteristic numbers. Let Z be
invertible and consider the change

ω′
1 = Z−1ω1(Z−1)† , ω′

2 = Z†ω2Z . (1.181)

One immediately sees
ω′

1ω
′
2 = Z−1(ω1ω2)Z (1.182)

and
char(ω′

1ω
′
2) = char(ω1ω2) . (1.183)

Now (1.173) implies the following: The eigenvalues of
√
ω1ω2

√
ω1 do not

change if ω1, ω2 are transformed according to (1.181). In particular

F (ω1, ω2) = F
(
Z−1ω1(Z−1)†, Z†ω2Z

)
. (1.184)

Indeed, the argument is valid for every symmetric function of the character-
istic numbers in question.

We can even refrain from the invertibility of Z by substituting

ω1 → Zω1Z
†

in (1.184):
F (Zω1Z

†, ω2) = F (ω1, Z
†ω2Z) . (1.185)

Relaying on continuity, we can state (1.185) for all operators Z.
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1.4.7 “Operational Fidelity”

The question is whether the fidelity concept can be extended to pairs of quan-
tum channels. Apparently, the first relevant studies were done by Raginski
[66]. More recent developments can be seen from Belavkin et al. [67] and
Kretschmann et al. [68]. Essentially, our aim is to define what is called opera-
tional fidelity and to arrive at it via the Bures distance. We restrict ourselves
to maps Φ from B(H) into itself, and we assume dimH = d finite.

We denote the identity map I(X) = X, X ∈ B(H) by I. Later on, we
need the identity maps Ik of auxiliary algebras B(Hk) with dimHk = k.

With two positive maps, Φ1 and Φ2, and a density operator, ω ∈ Ω(H),
we observe that

Φ1, Φ2 → distB(Φ1(ω), Φ2(ω))

is symmetric in the maps and fulfills, for three positive maps, the triangle
inequality. This is because the Bures distance does so. As Φ1(ω) = Φ2(ω)
may happen, we do not necessarily get a metrical distance, but only a semi-
distance. As one can check, the sup of arbitrary many semi-distances is again
a semi-distance. Therefore,

dist1(Φ1, Φ2) := sup
ω∈Ω

distB(Φ1(ω), Φ2(ω)) (1.186)

is a distance in the space of positive maps.
Indeed, as said above, it is a semi-distance. But if two maps are not equal

one to another, there must be a density operator at which they take different
values. The index “1” in (1.186) reflects our assumption that the maps are
just positive, i.e., 1-positive. Obviously, the distance dist1(Φ, I) estimates how
strongly Φ deviates from the identity map.

If a map Φ is k-positive, then the map Φ⊗ Ik is still positive. For pairs of
k-positive maps, the expression

distk(Φ1, Φ2) := dist1(Φ1 ⊗ Ik, Φ2 ⊗ Ik) (1.187)

is well defined. More explicitly, (1.187) is a sup,

sup
ρ

distB

(
[Φ1 ⊗ Ik](ρ), [Φ2 ⊗ Ik](ρ)

)
, (1.188)

over all density operators ρ ∈ Ω(H⊗Hk).
One can unitarily embed H ⊗ Hk into H ⊗ Hk+1. This implies that the

sup in (1.188) is running over less states as in the case distk+1, resulting in

distk(Φ1, Φ2) ≤ distk+1(Φ1, Φ2) . (1.189)

This enables the introduction of an operational Bures distance

dist∞(Φ1, Φ2) := lim
k→∞

distk(Φ1, Φ2), (1.190)
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which takes into account possible entanglement in the input. Possible entan-
glement based on H⊗Hk saturates with dimH = k,

dist∞(Φ1, Φ2) = distd(Φ1, Φ2) , d = dimH . (1.191)

To obtain what has been called operational fidelity in the literature, we have
to go back to the relation (1.124)

distB(ω1, ω2) =
√

trω1 + trω2 − 2F(ω1, ω2)

and try to replace accordingly states by maps. The task can be done quite
naturally for completely positive, trace preserving maps: For all these maps,
trΦ(ω) = 1 for density operators. It suggests

dist∞(Φ1, Φ2) =
√

2− 2F(∞)(Φ1, Φ2) . (1.192)

The quantity F(∞)(Φ1, Φ2) is called operational fidelity. The index (∞) is not
standard and stands here only to respect the possibility of the same procedure
with k-positive and trace preserving maps. For such maps, one can consider
an operational fidelity for k-positivity, F(k), as well.

As a matter of fact, one can transmit several properties of the fidelity and
the Bures distance for states to completely or k-positive and trace preserving
maps. The joint concavity for instance allows to perform the sup in (1.186)
or in (1.187) over pure states only.

1.5 Appendix: The Geometrical Mean

Let A, B, and C be positive operators in a finite-dimensional Hilbert space.
A remarkable observation by Pusz and Woronowicz [69] can be rephrased in
the following form:

Given A ≥ 0 and B ≥ 0, there is a largest operator in the set of all C
satisfying

(
A C
C B

)
≥ 0 , C ≥ 0 . (1.193)

This unique element is called the geometrical mean of A and B, and it will
be denoted, following Ando, by

A#B . (1.194)

In other words, (1.193) is valid if and only if

0 ≤ C ≤ A#B . (1.195)
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From the definition, we get the relation

A#B = B#A , A−1#B−1 = (A#B)−1 ; (1.196)

the latter is true for invertible positive operators. If just A is invertible, then
the block matrix (1.193) is positive if and only if

B ≥ CA−1C, (1.197)

and one concludes that A#B is the unique positive solution X of the equation

B = XA−1X , X ≥ 0 . (1.198)

The equation can be solved, and one gets

A#B = A1/2
(
A−1/2BA−1/2

)1/2

A1/2 . (1.199)

To prove it, one rewrites (1.198) as

A−1/2BA−1/2 =
(
A−1/2XA−1/2

)2

and takes the root.
In case B−1 exists too, we may rewrite (1.198) as

1 = B−1/2XA−1XB−1/2 =
(
B−1/2XA−1/2

) (
B−1/2XA−1/2

)†
.

Therefore, if A and B are strictly positive, the following three statements are
equivalent:

(a) X = A#B,
(b) (B−1/2XA−1/2) is unitary,
(c) (A−1/2XB−1/2) is unitary.

In turn, as shown in [70], an operator X = (A1/2UB1/2) with unitary U is
positive exactly if X = A#B.

If A and B commute, one can see from (1.193)

AB = BA ⇒ A#B = (AB)1/2 . (1.200)

To get it, one uses a common eigenbasis, which reduces (1.193) to
(
a c
c b

)
≥ 0 ⇔ ab ≥ c2,

for three positive numbers a, b, and c.
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1.5.1 Geometric Mean and Fidelity

Let us return to the operator K, defined in (1.154) by

W2 = KW1 if W †
1W2 > 0,

for parallel and invertible amplitudes. One can calculate

K = ω
−1/2
1

(
ω

1/2
1 ω2ω

1/2
1

)1/2

ω
−1/2
1 (1.201)

and conclude the following: First, we can rewrite (1.201),

K = ω2#ω−1
1 , (1.202)

and second, the expression remains meaningful for not invertible ω2. In this
sense, we understand the right-hand side of (1.201) and (1.202) to be valid for
all pairs of positive operators in our finite-dimensional setting. One further
concludes that for general pairs of positive operators, we have to substitute

K → ω2#ω−1
1 and K−1 → ω1#ω−1

2 ,

in order that (1.156) and (1.157) can be applied to not necessarily invertible
positive operators. With this convention, one arrives at

Pr(ω1, ω2) = ω1

(
ω2#ω−1

1

)
= ω2

(
ω1#ω−1

2

)
.

For parallel purifications in HAB = HA ⊗ HB of states ωA
1 and ωA

2 , one
may ask how these purifications appear in Bob’s system, i.e., after tracing
out the A-system. To this end, let us first review the general situation, not
requiring parallelity. We choose amplitudes, W1, W2, for ωA

1 and ωA
2 , so that,

for m = 1, 2,

ωA
m = WmW

†
m = trB|ψm〉〈ψm| , |ψm〉 =

(
Wm ⊗ 1B

)
|ϕ〉 , (1.203)

with |ϕ〉 chosen maximally entangled and with norm d = dimHA as in
(1.128). For any Y ∈ B(HB), we get

tr (|ψn〉〈ψm|)BY = 〈ψm|
(
1A ⊗ Y

)
|ψn〉 = 〈ϕ|(W †

mWn ⊗ Y )|ϕ〉 . (1.204)

The last expression is equal to
∑

〈j|W †
mWn|k〉 〈j|Y |k〉 .

Let us define the transposition X → X	 by

〈j|X	|k〉B = 〈k|X|j〉A . (1.205)
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In this equation, we used the two basis of the subsystems with which ϕ is
represented in (1.128). It now follows

tr (|ψn〉〈ψm|)BY = tr (W †
mWn)	Y

and, therefore,
(|ψn〉〈ψm|)B = (W †

mWn)	 . (1.206)

Next, we conclude, for m = 1, 2,

ωB
m := (|ψm〉〈ψm|)B = (W †

mWm)	 . (1.207)

We are now prepared to use parallel amplitudes and proceed to show

W †
mWn ≥ 0 ⇒ W †

mWn = (W †
mWm)#(W †

nWn) . (1.208)

At first, we assume invertibility of Wm and use the identity

(W †
nWn) = (W †

nWm)(W †
mWm)−1(W †

mWn),

which is true for parallel amplitudes. According to (1.198), our assertion
must be true. In the general case, we mention that (1.193) forces the geo-
metric mean A#B to give zero if applied to any null vector of either A or B.
Therefore, the support of A#B is the intersection of the supports of A and
of B. Thus, A and B become invertible if restricted onto the support of their
geometric mean, and the reasoning above applies.

We can now return to (1.208) and state the following: If Wm are parallel
amplitudes for ωA then

W †
1W2 =

(
ωB

1 #ωB
2

)	
(1.209)

and, in particular,
F
(
ωA

1 , ω
A
2

)
= tr

(
ωB

1 #ωB
2

)
. (1.210)

1.5.2 The Transformer Identity

To get further insight, one may use the fact that A#B is an operator mean.
In particular, it satisfies the so-called transformer identity, i.e., for invertible
Z it enjoys

Z(A#B)Z† = (ZAZ†)#(ZBZ†) . (1.211)

For the proof, one relays on

(
A C
C B

)
≥ 0 ⇔

(
ZAZ† ZCZ†

ZCZ† ZBZ†

)
≥ 0,

for invertible Z.
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Now we can combine (1.200) and (1.211) with Z = A+ B. To check the
positivity of (1.193), it is sufficient to do so on the support space of A + B.
Thus, we may assume that this operator is invertible. Then

A′ = (A+B)−1/2A(A+B)−1/2 and B′ = (A+B)−1/2B(A+B)−1/2

commute. Indeed, it follows

A′ +B′ = 1 , A′#B′ = (A′B′)1/2,

and we can apply (1.211). Therefore, we can express A#B by

(A+B)1/2
(
(A+B)−1/2A(A+B)−1B(A+B)−1/2

)1/2

(A+B)1/2 . (1.212)

Resume. An expression is equal to A#B if it does so for commuting positive
operators and if it satisfies the transformer identity.

A further application arises from the integral

1#A =
√
A =

1
π

∫ 1

0

(
xA−1 + (1− x)1

)−1 dx
√
x(1− x)

.

Substituting A→ B−1/2AB−1/2, the transformer identity

B#A = B1/2
(
1#

(
B−1/2AB−1/2

))
B1/2

allows to infer algebraically

A#B =
1
π

∫ 1

0

(
xA−1 + (1− x)B−1

)−1 dx
√
x(1− x)

. (1.213)

Super-Additivity

We prove super-additivity. Let

A =
∑

Aj , B =
∑

Bj ,

and

Cj = Aj#Bj , C =
∑

Cj .

Then (
A C
C B

)
=
∑(

Aj Cj

Cj Bj

)

is a positive block matrix. Thus C is smaller than A#B and that proves
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A#B ≥
∑

Aj#Bj . (1.214)

This nice inequality is the key to further estimates. We enumerate m positive
operators, A1, . . . Am, and modulo m by Ak+m = Am. Then, we set Bj =
Aj+1. Then the sum A of m consecutive Aj is equal to that of the Bj . Then,
on the left side of (1.214), we have A#B = A. Equation (1.214) yields

m∑

1

Aj ≥
m∑

j

Aj#Aj+1 . (1.215)

Take m = 2 as a particular case and respect (1.196). We get

(A+B)/2 ≥ A#B .

Replacing A and B by A−1 and B−1, we get
(
A−1 +B−1

)
/2 ≥ (A#B)−1

by (1.196). Taking the inverse of that inequality,

A#B ≥ 2
(
A−1 +B−1

)−1
.

The right-hand side is the harmonic mean of A and B.
A hint to further developments: It is not obvious how to define a geomet-

rical mean of more than two operators. One of the proposals is by Ando et al.
[70]. It fits to the equality (1.215), and we describe it for just three positive
operators, A,B, and C. We define recursively

Aj+1 = Bj#Cj , Bj+1 = Cj#Aj , Cj+1 = Aj#Bj , (1.216)

starting with A0 = A,B0 = B, and C0 = C. Equation (1.215) proves (1.216)
to be a decreasing sequence of positive operators. Therefore, there is a limiting
operator which is, up to a factor, the geometric mean G(A,B,C) favored by
Ando, Li, and Mathias,

G(A,B,C) =
1
3

lim
j→∞

Aj +Bj + Cj . (1.217)

For three commuting operators, one gets (ABC)1/3. However, for three
positive operators, in general position, no explicit expression is known for
(1.217) – even if the operators live on a 2-dimensional Hilbert space.

Monotonicity

Our next task is to prove a monotonicity theorem. Let Ψ be a positive super-
operator and Ψ(1) > 0. According to Choi [63], Ψ is almost 2-positive: A
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2 × 2-positive block matrix with Hermitian off-diagonal remains positive by
applying Ψ . That is

(
A C
C B

)
≥ 0 , C = C† ⇒

(
Ψ(A) Ψ(C)
Ψ(C) Ψ(B)

)
≥ 0 . (1.218)

Therefore, applied to C = A#B, with
(

A A#B
A#B B

)
also

(
Ψ(A) Ψ(A#B)

Ψ(A#B) Ψ(B)

)

must be a positive block operator with positive entries. Hence,

Ψ(A#B) ≤ Ψ(A)#Φ(B) (1.219)

is valid by the very definition of the geometric mean.

A Rank Criterion

Here we like to prove the following: Let A, B, and C be positive operators in
a Hilbert space of dimension d. We further assume that A−1 and B−1 exist.
With these data, we consider the matrix

X =
(
A C
C B

)
, (1.220)

which is an operator in B(H⊕H). Then

rankX ≥ d = dimH , (1.221)

and equality holds if and only if C = A#B .

Proof. At first, we mention that the invertibility of A and B is essential. It
allows to introduce the matrix

Y =
(

1 D
D† 1

)
:=

(
A−1/2 0

0 B−1/2

)
X

(
A−1/2 0

0 B−1/2

)
, (1.222)

which is of the same rank as X. The set of eigenvectors of Y with eigenvalue
0 is a subspace H0 of H⊕H. The unit vector ψ ⊕ ϕ belongs to H0 if

ψ +Dϕ = 0 , D†ψ + ϕ = 0 .

At first, we see that neither ψ nor ϕ can be the zero vector of H. (Otherwise
both, ψ and ϕ, must be zero.) Hence, the dimension of H0 cannot exceed d,
confirming (1.221). (This is so because, otherwise, one must have a non-zero
vector in H0 with either ψ or ϕ equal to the zero vector. We had already
excluded this.) Secondly, we deduce, by eliminating ψ, respectively, ϕ,
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(1−DD†)ψ = 0 , (1−D†D)ϕ = 0 .

If dimH0 = d, then these equations are valid for all ψ ∈ H and all ϕ ∈
H. Therefore, D is unitary if the ranks of Y and X are equal to d. Then
D = A−1/2CB−1/2 is unitary. However, we already know that this can be
true if and only if C = A#B. Finally, if D is unitary, we can easily find d
linear-independent vectors of Y with eigenvalue zero.

Geometrical Mean in Two Dimensions

Let A and B be two positive operators acting on a 2-dimensional Hilbert
space. Explicit expressions for the geometric mean are known:

A#B =
√
st

√
det(A/s+B/t)

(A/s+B/t)

with
s =

√
detA , t =

√
detB .

1.5.3 #-Convexity

To handle more than two positive operators in general position is a very hard
task. This is one of the problems we like to pose. We think it is important
and, perhaps, not completely hopeless.

A set K of positive operators is called #-convex , if

(a) K contains all its limiting operators and
(b) K contains with A, B also A#B.

Let us denote by #[A,B] the smallest #-convex set containing A and B.
Assuming AB = BA and both invertible, then

#[A,B] =
{
AsB1−s | 0 ≤ s ≤ 1

}
. (1.223)

If the operators A and B are not invertible, then A0 and B0 must be in-
terpreted as the projections PA and PB onto the support of A and B, re-
spectively. The general case of two non-commuting positive operators can be
settled by the transformer inequality

Z #[A,B]Z† = #
[
ZAZ†, ZBZ†] . (1.224)

Denote by #[A1, A2, . . . Am] the smallest #-convex set containing A1, . . . Am.
If the operators Aj are invertible and pairwise commuting, it is not hard to
show that #[A1, A2, . . . , Am] consists of all operators

As1
1 A

s2
2 · · ·Asm

m ,
∑

sj = 1, (1.225)

with all sj ≥ 0. What happens without commutativity is unknown.
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2.1 Introduction

Quantum systems display properties that are unknown for classical ones,
such as the superposition of quantum states, interference, or tunneling. These
are all one-particle effects that can be observed in quantum systems, which
are composed of a single particle. But these are not the only distinctions
between classical and quantum objects – there are further differences that
manifest themselves in composite quantum systems, that is, systems that are
comprised of at least two subsystems. It is the correlations between these
subsystems that give rise to an additional distinction from classical systems,
whereas correlations in classical systems can always be described in terms
of classical probabilities; this is not always true in quantum systems. Such
non-classical correlations lead to apparent paradoxes like the famous Einstein
Podolsky Rosen scenario [1] that might suggest, on the first glance, that there
is remote action in quantum mechanics.

States that display such non-classical correlations are referred to as entan-
gled states, and it is the aim of this chapter to introduce the basic tools that
allow to understand the nature of such states, to distinguish them from those
that are classically correlated, and to quantify non-classical correlations.

2.2 Entangled States

Composite quantum systems are systems that naturally decompose into two
or more subsystems, where each subsystem itself is a proper quantum sys-
tem. Referring to a decomposition as “natural” implies that it is given in an
obvious fashion due to the physical situation. Most frequently, the individual
susbsystems are characterized by their mutual distance that is larger than
the size of a subsystem. A typical example is a string of ions, where each ion
is a subsystem, and the entire string is the composite system. Formally, the
Hilbert space H associated with a composite, or multipartite system, is given
by the tensor product H1 ⊗ · · · ⊗ HN of the spaces corresponding to each of
the subsystems.
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In the following, we shall focus on finite-dimensional bipartite quantum
systems, i.e., systems composed of two distinct subsystems, described by the
Hilbert spaceH = H1⊗H2. Many of the concepts and ideas that we introduce
can, nevertheless, be generalized to multipartite systems.

2.2.1 Pure States

We start out with a bipartite system with each subsystem prepared in a pure
state |ψi〉 (i = 1, 2). The state of the composite system |Ψs〉 is the direct
product thereof:

|Ψs〉 = |ψ1〉 ⊗ |ψ2〉 . (2.1)

Suppose that one could perform only local measurements on the system,
i.e., one had access to only one of the subsystems at a time. Then, after a
measurement of any local observable a⊗1 on the first subsystem, where a is
a hermitian operator acting on H1, and 1 is the identity acting on H2, the
state of the first subsystem will be projected onto an eigenstate of a, but the
state of the second subsystem remains unchanged. If later on, one performs
a second local measurement, now on the second subsystem, it will yield a
result that is independent of the result of the first measurement. Hence, the
measurement outcomes on different subsystems are uncorrelated with each
other and depend only on the states of each respective subsystem.

A general pure state in H can be given by a superposition of pure states
of the form (2.1), for example,

|Ψe〉 =
1√
2

(|ψ1〉 ⊗ |ψ2〉+ |φ1〉 ⊗ |φ2〉) , (2.2)

where |ψi〉 �= |φi〉 (i = 1, 2). We may now ask what the state |Ψe〉 looks like if
one has access to only one of the subsystems? For a local operator a⊗ 1 on
the first subsystem, the expectation value observed in an experiment reads

〈a〉 = 〈Ψe|a⊗ 1|Ψe〉
= tr(a⊗ 1 |Ψe〉〈Ψe|)
= tr1(a tr2|Ψe〉〈Ψe|)
= tr1(a�1) ,

(2.3)

where tr1,2 denotes the partial trace over the first/second subsystem, and
�1 = tr2|Ψe〉〈Ψe| is the reduced density matrix of the first subsystem. Since
(2.3) holds for any local operator a, we need to conclude that the state of the
first subsystem alone is given by �1. An analogous reasoning leads to the con-
clusion that also the state of the second subsystem is described by its reduced
density matrix �2 = tr1|Ψe〉〈Ψe|. The state of the composite system, however,
is not equal to the product of both subsystem states, ρ = |Ψe〉〈Ψe| �= ρ1 ⊗ ρ2.
Moreover, if one performs a local measurement on one subsystem, this leads
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to a state reduction of the entire system state, not only of the subsystem on
which the measurement had been performed. Therefore, the probabilities for
an outcome of a measurement on one subsystem are influenced by prior mea-
surements on the other subsystem. Thus, measurement results on – possibly
distant and non-interacting – subsystems are correlated.

Based on these considerations, we can define that

states that can be written as a product of pure states, as in (2.1),
are called product or separable states. If on the contrary, there are
no local states |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, such that the state of the
system |Ψ〉 can be written as a product thereof:

� |ψ1〉 ∈ H1, |ψ2〉 ∈ H2 such that |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 , (2.4)

then |Ψ〉 is an entangled state.

2.2.2 Mixed States

So far we considered only pure states. More generally, however, the state of a
quantum system can be mixed. Mixed states are in fact the most frequently
encountered states in real experiments, since hardly any quantum system
can be isolated completely from its surroundings. As elaborated in more
detail in Sect. 5.3.1, it is in general not possible to keep track of the many
environmental degrees of freedom, and the state of the system is given by
the partial trace over the environment. This reduced state is then typically
mixed.

Similarly to the case of pure states, mixed product states,

� = ρ(1) ⊗ ρ(2) (2.5)

with ρ(1) and ρ(2) for the respective subsystems, do not exhibit correlations.
A convex sum of different product states,

� =
∑

i

pi ρ
(1)
i ⊗ ρ

(2)
i , (2.6)

with pi > 0 and
∑

i pi = 1, however, will in general yield correlated
measurement results, i.e., there are local observables a and b such that
tr(�(a ⊗ b)) �= tr(�(a ⊗ 1)) tr(�(1 ⊗ b)) = tr1�1a tr2�2b. These correlations
can be described in terms of the classical probabilities pi, and are therefore
considered classical. States of the form (2.6) thus are called separable mixed
states.

Mixed entangled states, in turn, are defined by the non-existence of a
decomposition into product states [2]:

A mixed state � is entangled if there are no local states ρ(1)
i , ρ(2)

i , and
non-negative weights pi, such that � can be expressed as a convex
mixture thereof:
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� �
(1)
i , �

(2)
i , pi ≥ 0 such that � =

∑

i

pi ρ
(1)
i ⊗ ρ

(2)
i . (2.7)

Entangled states imply quantum correlations of measurements on different
subsystems which, in contrast to classical correlations (see above), cannot be
described in terms of only classical probabilities.

2.3 Separability Criteria

The above definitions of separable and entangled states appear simple on
a first sight. But checking separability of a given state can turn out to be
much more involved than one might expect. Separability is defined via the
existence of a decomposition of a state into product states in the case of pure
states, or into a convex sum of tensor products for mixed states. That is,
in order to show that a given state is separable, one has to look for such
decompositions. Once a decomposition is found one knows that a state is
separable. But the failure to find one can have two different reasons: either
the state is entangled and there is no decomposition into product states, or
the state is actually separable, but the appropriate decomposition could not
be identified.

For this reason, there is a need for potentially simple criteria to distinguish
separable from entangled states that do not require an explicit search. For
pure states, there are criteria that discriminate separable and entangled states
unambiguously, but for mixed states similar tools are available only for low-
dimensional system. For higher dimensional systems, these tools can provide
only partial information, as we will see later on. But, before we discuss mixed
states, we will start out with the comparatively simpler case of pure states.

2.3.1 Pure States

Let us consider the exemplary case

|Ψ〉 =
|0〉+ |1〉√

2
⊗ |0〉+ 2|1〉√

5
. (2.8)

One can see that |Ψ〉 factorizes into local states – it is separable, though could
be rewritten also as

|Ψ〉 =
|00〉+ 2|01〉+ |10〉+ 2|11〉√

10
, (2.9)

where separability is less evident. It just turns out that separability is more
easily identified if |Ψ〉 is expressed in the bases {(|0〉+|1〉)/

√
2, (|0〉−|1〉)/

√
2}

of H1 and {(|0〉+2|1〉)/
√

5, (2|0〉−|1〉)/
√

5} of H2 than in the basis {|0〉, |1〉}.
As we shall see, the observation is generic, in the sense that there is always
a basis that allows to reveal the entanglement properties. The representation
of a state in this basis is called the Schmidt decomposition [3].
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Schmidt Decomposition

Given two arbitrary local bases {|ϕi〉} and {|φi〉} in the spaces H1 and H2,
any pure state |Ψ〉 in H = H1 ⊗H2 can be expressed in terms of the corre-
sponding product basis

|Ψ〉 =
∑

ij

dij |ϕi〉 ⊗ |φj〉 . (2.10)

The expansion coefficients dij are given by the overlap of the state with the
basis vectors, dij = 〈ϕi| ⊗ 〈φj |Ψ〉. If one now makes a change of bases |ϕ̃i〉 =
U|ϕi〉 and |φ̃i〉 = V|φi〉, with U and V arbitrary, local unitary transformations
on H1 and H2, respectively, the dij change accordingly:

d̃ij = 〈ϕ̃i| ⊗ 〈φ̃j |Ψ〉
= 〈ϕi| U† ⊗ 〈φj |V†|Ψ〉
=
∑

pq

〈ϕi| U†|ϕp〉〈φj |V†|φq〉〈ϕp| ⊗ 〈φq|Ψ〉

= [udv]ij ,

(2.11)

where in the third line we used the resolution of the identity on each sub-
system,

∑
i |ϕi〉〈ϕi| = 1 and

∑
i |φi〉〈φi| = 1, and we defined the unitary

matrices uip = 〈ϕi| U†|ϕp〉, vqj = 〈φj |V†|φq〉. In the new basis, the state is
given by

|Ψ〉 =
∑

ij

[udv]ij |ϕ̃i〉 ⊗ |φ̃j〉 . (2.12)

In order to obtain the Schmidt decomposition of |Ψ〉, we use the fact that
for every complex matrix d, there always exist unitary transformations u and
v such that udv is diagonal. This provides the singular value decomposition
of d [4], with real, non-negative diagonal entries Si, called singular values.
Therefore, for each state |Ψ〉, one can always find local bases |ϕS

i 〉 and |φS
i 〉

in terms of which (2.12) reduces to

|Ψ〉 =
∑

i

√
λi |ϕS

i 〉 ⊗ |φS
i 〉 , (2.13)

where the λi = S2
i are known as Schmidt coefficients, and the sum is limited

by the dimension of the smaller subsystem. Like eigenvalues of a matrix, also
the singular values are uniquely defined. Hence, for any state |Ψ〉 the Schmidt
coefficients are unique. Furthermore, since the Schmidt basis {|ϕS

i 〉⊗ |φS
j 〉} is

given by separable states, all information on the entanglement of a state is en-
coded in the Schmidt coefficients: If there is only one non-vanishing Schmidt
coefficient, then |Ψ〉 is separable. Otherwise, when at least two Schmidt co-
efficients are different from zero, it is not possible to express |Ψ〉 in the form
(2.1). Consequently, we can conclude that a pure state |Ψ〉 is separable if and
only if it has only one non-vanishing Schmidt coefficient.
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Reduced Density Matrix

Since the Schmidt coefficients are so useful for the distinction of separable
and entangled states, we should focus on how to evaluate them. The reduced
density matrices are particularly helpful in this context. The one of the first
subsystem reads

�1 = tr2|Ψ〉〈Ψ |
= tr2

∑

ij

√
λiλj |ϕS

i 〉〈ϕS
j | ⊗ |φS

i 〉〈φS
j |

=
∑

i

λi|ϕS
i 〉〈ϕS

i | ,

(2.14)

in terms of the Schmidt decomposition (2.13), where we used the orthonor-
mality of the Schmidt basis while performing the trace over the second sub-
system.

We see that the Schmidt coefficients are given by the eigenvalues of the
reduced density matrix �1. An equivalent reasoning holds for the reduced
density matrix of the second subsystem �2 = tr1|Ψ〉〈Ψ |; that is �1 and �2

have the same non-vanishing eigenvalues, and the basis vectors of the Schmidt
basis are given by the eigenstates of �1 and �2.

We not only found a simple prescription to evaluate the Schmidt co-
efficients of any state |Ψ〉, but since separability requires that exactly one
Schmidt coefficient is different from zero, we also have related the entan-
glement of a pure state |Ψ〉 to the degree of mixing of the reduced density
matrices. That is, we can restate the separability criterion for pure states:

tr�2
r = 1 ⇒ �r is pure ⇒ |Ψ〉 is separable

tr�2
r < 1 ⇒ �r is mixed ⇒ |Ψ〉 is entangled

(2.15)

with r referring to either one of the two subsystems.

2.3.2 Mixed States

For pure states, the Schmidt decomposition provides a necessary and suffi-
cient criterion for separability. Unfortunately, for mixed states such an elegant
decomposition does not exist. In particular, if a state is mixed, the degree of
mixing of its reduced density matrices is not an indicator of entanglement.
Therefore, we need to find some new criteria to distinguish entangled from
separable mixed states. The most prominent of such tools are entanglement
witnesses and positive maps. As we shall see, both concepts are closely re-
lated.
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Entanglement Witnesses

An entanglement witness W [5, 6] is a hermitian operator acting on H that
is not positive definite, but that yields positive expectation values

〈Ψs|W |Ψs〉 ≥ 0 , (2.16)

for all separable pure states |Ψs〉. Since any separable mixed state can
be expressed as a convex sum of projectors onto pure separable states,
�s =

∑
i pi |Ψ (i)

s 〉〈Ψ (i)
s | with pi > 0, and

∑
i pi = 1, (2.18) implies that the

expectation value of an entanglement witness with respect to any separable
mixed state is also non-negative,

tr(�sW ) =
∑

i

pi〈Ψs|W |Ψs〉 ≥ 0 . (2.17)

Thus, if a given density matrix � leads to a negative expectation value

tr(�W ) < 0 , (2.18)

then � is entangled, and one says that W detects �.
The central benefit of witnesses is that there exists a witness for any

entangled state that detects it [5]. Here we do not go into the details of the
formal proof, but rather give some geometric, intuitive arguments that allow
to understand why entanglement witnesses work.

Geometry of Quantum States

Let’s try to understand quantum states in a geometrical setting. Density
matrices can be conceived as vectors in a vector space that is referred to
as Hilbert–Schmidt space [7]. For a geometric interpretation of this vector
space, one needs a scalar product, and in the present context, this is defined
as

〈A|B〉 = tr A†B . (2.19)

Now, separable states form a convex set. That means that, given two arbitrary
separable states �(1)

s and �(2)
s , any convex sum λ�

(1)
s +(1−λ)�(2)

s (1 ≥ λ ≥ 0) is
again separable. Geometrically, this means that the set of separable states has
no trough, as illustrated in Fig. 2.1, where the shapes A, B, and C represent
different convex sets, whereasD is not convex, since it has a trough on its right
bottom part. Now, one can find several lines that separate the grey shaded
areas from their white surrounding – the depicted lines Wi (i = 1, . . . , 8) are
only exemplary ones; one may find many more.

There is one crucial difference between cases A, B, and C on the one
hand, and D on the other hand: For any point outside the convex sets A,
B, and C, one can find a straight line that separates this point from the
gray-shaded area. For D, this is not always possible. There is no straight line
that separates D from point Z.
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A B

D
W1

W2

W4

W5

W6

W7

W8

Z

W3

C

Fig. 2.1. Four different shapes, three of which (A, B, C) are convex, whereas
shape D is not. To any point outside the convex shapes, there exists a line (like
Wi, i = 1, . . . , 6) that separates this point from the corresponding convex shape.
For the non-convex shape D, the situation is different: for the point Z, there is no
such line. The situation of entanglement witnesses is analogous: the set of separable
states is convex; there exists a witness (the analogue of a line Wi) to any entangled
state (the analogue of a point outside the grey shapes) that separates it from the
set of separable states (the analogue of one of the convex shapes)

Although, the set of separable states is high dimensional and more com-
plicated than the shapes in Fig. 2.1, the basic geometric picture of Fig. 2.1
still allows to understand the basic mechanism of entanglement witnesses.

Geometric Interpretation of Entanglement Witnesses

A separable state is characterized by the condition tr �W ≥ 0. The condition
that trσW vanishes, requires σ to be a linear combination of operators Oi

that are orthogonal to W :

σ =
∑

i

αiOi , with tr(OiW ) = 0 . (2.20)

That is, the condition trσW = 0 defines a hyperplane in the space of opera-
tors – analogous to the lines Wi in Fig 2.1. The sign of tr �W then indicates
on which side of the hyperplane � is situated, and all separable states are sit-
uated on one side of this hyperplane (tr �W ≥ 0). Since the separable states
form a convex set, there is a witness to any entangled state that detects it,
just like there is a line to any point outside A, B, or C that separates it from
the respective grey shaded areas.

Due to the complicated structure of the set of separable states that has
curved borders, one needs infinitely many witnesses to characterize it com-
pletely. Given some specific entangled state �, it can be rather complicated to
find a witness that detects it, and the failure to find a suitable witness for a
state � does not necessarily allow to conclude that � is separable. Therefore,
a witness provides a necessary separability criterion: if a state is separable, it
will yield a non-negative expectation value for any witness; but separability
of a state cannot deduced from such a non-negative expectation value.
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Positive Maps

An alternative tool to check on separability is the so-called positive linear
maps Λ that map the set of operators B(H) acting on a Hilbert space H on
the set B(H̃), where H̃ can – though not necessarily needs to – be a different
Hilbert space than H. Such a map Λ is considered positive if �̃ = Λ(�) is
a positive operator, for any positive operator �. Now, let us consider the
case of a bipartite system. One can extend this map to the product space
H = H1⊗H2, such that the extended map ΛE acts on B(H1) like Λ, and ΛE

acts trivially on B(H2), i.e.,

ΛE = Λ⊗ 1 . (2.21)

A very counterintuitive property of these positive maps is that the extended
map ΛE is not necessarily positive. That is, for some maps Λ, there are states
� on H = H1 ⊗H2, such that ΛE(�) is not a positive operator.

Now, let us take a separable state �s, i.e., one that has a convex decom-
position into product states, and apply a positive linear map to it,

ΛE(�s) =
∑

i

piΛ(ρ(1)
i )⊗ ρ

(2)
i . (2.22)

Since Λ is positive, Λ(ρ(1)
i ) is a positive operator; and since also pi and ρ(2)

i are
positive, any expectation value of ΛE(�s) is positive, and therefore ΛE(�s)
remains a positive operator. Thus, for any separable state, there is no positive
map Λ, such that ΛE(�s) is not a positive operator. That is, if one can find
a positive map Λ such that ΛE(�) has at least one negative eigenvalue for a
given state �, then one knows for sure that � is entangled.

The inverse statement is more involved. If one wants to prove separability
of a state � on H1 ⊗ H2, then it is necessary to consider maps Λ that map
B(H2) on B(H1) – that is (1 ⊗ Λ)(�) is an operator acting on H1 ⊗ H1.
Now, a state is separable if and only if (1⊗ Λ)(�) is positive for all positive
linear maps of B(H2) on B(H1). But, since the characterization of positive
maps is an open problem, such maps only provide a necessary separability
criterion like above in the case of witnesses: if one has found a map Λ, such
that (1⊗Λ)(�) is not a positive operator, then the state � is entangled. But
if one fails to find such a map, then one does not necessarily know whether
this is due to separability of �, or just due to the lack of success to find a
suitable map.

Only in systems of small dimension the concept of positive maps allows
to formulate a constructive criterion that is both necessary and sufficient: for
a system of two qubits or a system of one qubit and one qutrit (three-level
system), one can check separability by considering only a single positive map,
and that is the transposition T (�) = �T , i.e., the reflection of a matrix � along
the diagonal [5, 8]. The underlying reason for this is that any positive map
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from B(C2) on B(C2), or on B(C3), i.e., maps that take a qubit-operator to
a qubit- or to a qutrit-operator can be written as

Λ = Λ1
CP + Λ2

CP ◦ T , (2.23)

where Λi
CP (i = 1, 2) are completely positive maps, and T is the transposition

[9, 10]. Therefore, the condition that (1⊗ Λ)(�) be positive for any positive
map Λ reduces to

(1⊗ Λ)(�) = (1⊗ Λ
(1)
CP )(�) + (1⊗ Λ

(2)
CP )(1⊗ T )(�)

= (1⊗ Λ
(1)
CP )(�) + (1⊗ Λ

(2)
CP )(�pt) ≥ 0 ,

(2.24)

where �pt = (1⊗T )(�) is called the partial transpose of �. Since the Λ(i)
CP are

completely positive, the extended maps 1⊗Λ(i)
CP are positive maps. Therefore,

(1⊗Λ
(1)
CP )(�) is non-negative, i.e., it has no negative eigenvalue. The partial

transpose �pt, however, is not necessarily a positive operator, since 1⊗ T is
not a positive map. But, if � is such that its partial transpose is non-negative,
then also (1⊗Λ

(2)
CP )(�pt) is non-negative. In that case, we can conclude that

(1 ⊗ Λ)(�) is non-negative for arbitrary positive maps Λ, and this implies
that � is separable. On the other hand, we already know that � is entangled
if its partial transpose has at least one negative eigenvalue. Therefore, the
spectrum of �pt allows to unambiguously distinguish separable from entangled
states in 2× 2-dimensional and 2× 3-dimensional systems.

In higher dimensional systems, however, (2.23) does not characterize all
positive maps anymore, and there are entangled states with positive par-
tial transpose (ppt). But also in high-dimensional systems, the so-called ppt-
criterion is a frequently used separability criterion: despite being only a nec-
essary separability criterion it still detects many entangled states, and it is
rather straightforward to implement: a general state of a bipartite system
can be expanded in some arbitrary product basis � =

∑
ij,kl �ij,kl |ϕi〉〈ϕj | ⊗

|φk〉〈φl|, and its partial transpose is obtained by a simple rearrangement of
matrix elements. �pt = (1⊗T )(�) =

∑
ij,kl �ij,lk |ϕi〉〈ϕj |⊗ |φk〉〈φl|. One may

check that �pt actually depends on the basis with the help of which it is
constructed. However, it is only the spectrum of �pt that enters the present
separability criterion, and the spectrum does not depend on this choice of
basis.

Witnesses and Positive Maps

So far, we presented entanglement witnesses and positive maps as indepen-
dent concepts. And indeed, they do not seem to have too much in common.
Entanglement witnesses could be understood in a geometric setting, and pos-
itive maps have rather counterintuitive properties. However, these two con-
cepts are more closely related than they seem to be on the first glance.
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Let us consider a positive map Λ such that the extended map 1⊗Λ applied
to some state � yields a non-positive operator, i.e., Λ is not a completely pos-
itive map. Then (1⊗Λ)(�) has an eigenvector |χ〉 with a negative eigenvalue
λ,

(1⊗ Λ)(�)|χ〉 = λ|χ〉 . (2.25)

We can now show that the observable W = (1⊗ Λ†)(|χ〉〈χ|) is an entangle-
ment witness. For an arbitrary separable state |Φs〉, we have

〈Φs|W |Φs〉 = tr
[(

(1⊗ Λ†)(|χ〉〈χ|)
)
|Φs〉〈Φs|

]

= tr
[
|χ〉〈χ| ((1⊗ Λ)(|Φs〉〈Φs|))

]
≥ 0 ,

(2.26)

where the inequality is due to the positivity of Λ, such that (1⊗ Λ)(|Φs〉〈Φs|)
is a positive operator. And, indeed, this witness detects � to be entangled:

tr(�W ) = tr
[
�
(
(1⊗ Λ†)(|χ〉〈χ|)

)]

= tr
[(

(1⊗ Λ)(�)
)
|χ〉〈χ|

]

= 〈χ|(1⊗ Λ)(�)|χ〉 = λ < 0

(2.27)

because of the above eigenvector relation.

2.4 Entanglement Monotones and Measures

So far we contented ourselves with a qualitative distinction between separable
and entangled states. This, however, does not allow to compare the amount
of entanglement of two different states. For such purposes, one would need a
quantitative description of entanglement. But the prior definition of entangle-
ment in terms of the nonexistence of a decomposition of a state into product
states (cf. (2.4),(2.7)) will not be helpful for finding such a quantification.
Therefore, before we can introduce entanglement measures, we need to refine
our concept of entanglement.

2.4.1 General Considerations

Let us forget for a while about the prior formal definition and focus more
on the interpretation that entanglement is tantamount to correlations that
cannot be described in terms of classical probabilities. This allows to arrive at
a new concept that allows for a quantitative description of entangled states,
and it will still be in agreement with the previous definitions of entanglement
and separability.

The idea is to classify all operations that one could apply to a composite
quantum system, and that can increase only classical correlations, that is
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those that are captured by probabilities pi as in (2.6). Once this is done, one
can make the decrease of correlations under all such operations a defining
property of entanglement. Thus, before we can come to the promised quan-
tification of entanglement, we first have to make a significant detour to end
up with what is referred to as local operations and classical communication.

Quantum Operations

To do so, let us start out with the most general operations. The basic ones that
are allowed by the laws of quantum mechanics comprise unitary evolutions

� → U�U† , with UU† = U†U = 1 , (2.28)

and v. Neumann measurements in which a quantum state � is projected onto
an eigenstate of the associated observable (see Sect. 5.1.3). Let us denote such
a complete set of eigenstates {|ϕi〉}. Then, the corresponding measurement re-
sults in the collapse of � on the state |ϕi〉〈ϕi|, with probability pi = 〈ϕi|�|ϕi〉.
That is, on average the state evolves as

� →
∑

i

pi|ϕi〉〈ϕi| =
∑

i

|ϕi〉〈ϕi|�|ϕi〉〈ϕi| . (2.29)

Thus, a v. Neumann measurement takes a state to a purely probabilistic
mixture of the states |ϕi〉, and it destroys all coherences between them com-
pletely. Though, one might wonder if one could come up with a slightly less
‘invasive’ measurement with less dramatic effects. And, indeed, one can do so,
if one uses an additional quantum system – often referred to as ancilla – lets
this ancilla interact with the original system, and finally performs the mea-
surement on the ancilla only. The original state ρ of the combined systems
including the ancilla reads

ρ = �⊗ |Ψa〉〈Ψa| , (2.30)

where |Ψa〉 is an ancilla state. An interaction between the original system and
the ancilla results in a global unitary evolution

U
(
�⊗ |Ψa〉〈Ψa|

)
U† , (2.31)

and a subsequent measurement in the basis {|Ψ (i)
a 〉} of ancilla states projects

this state on
〈Ψ (i)

a |U |Ψa〉�〈Ψa|U†|Ψ (i)
a 〉 = Ai�A

†
i , (2.32)

with the operators Ai = 〈Ψ (i)
a |U |Ψa〉 that act only on the original system. On

average, the state evolves as

� →
∑

i

Ai�A
†
i . (2.33)
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If one utilizes the completeness of the ancilla states
∑

i |Ψ
(i)
a 〉〈Ψ (i)

a | = 1, and
subsequently U†U = 1, one can convince oneself that the operators Ai satisfy
the resolution of the identity

∑

i

A†
iAi =

∑

i

〈Ψa|U†|Ψ (i)
a 〉〈Ψ (i)

a |U |Ψa〉 = 1 . (2.34)

This property is crucial, since it guarantees the conservation of the trace

tr
∑

i

Ai�A
†
i = tr

∑

i

A†
iAi� = tr� , (2.35)

and, therefore, of probability.
In Sect. 2.3.2, we were discussing positive maps and saw that a trivial

extension of a map is not necessarily a positive map again. However, for
any map that describes the evolution of a real quantum system, any such
extension needs to be positive: if a map acts only on a subcomponent of a
system, obviously the positivity of the state of the entire system has to be
ensured; this is the case exactly if the extension of the map is positive, i.e., if
the map is completely positive. Since any trace preserving, completely positive
map can always be expressed in the form of (2.33), and, since any map of
the form (2.33) is trace preserving and completely positive (see Sect. 5.3.1)
[11–13], (2.33) is indeed the most general evolution a quantum state can
undergo.

Some Examples

Let us look at a few exemplary cases of operations of the form (2.33) to
see how they can affect entanglement properties. First, consider the specific
unitary map

U =
1√
2

(
|00〉+ |11〉

)
〈00|+ 1√

2

(
|00〉− |11〉

)
〈11|+ |01〉〈01|+ |10〉〈10| . (2.36)

This is an example of a global operation, that is, it cannot be written as
U = U1⊗U2, and its implementation requires an interaction between the two
individual subsystems. Applying the map to |00〉 takes this separable state to
the entangled state U|00〉 = (|00〉+ |11〉)/

√
2. Thus, such a global operation

can indeed create entanglement.
A second example is given by a measurement in the Bell-basis

|ϕ1〉 =
|00〉+ |11〉√

2
, |ϕ2〉 =

|00〉 − |11〉√
2

, (2.37)

|ϕ3〉 =
|01〉+ |10〉√

2
, |ϕ4〉 =

|01〉 − |10〉√
2

, (2.38)

followed by a local unitary transformation that is conditioned on the mea-
surement outcome. Let us start again with the separable state |00〉. Re-
peated measurements yield the two different outcomes (|00〉+ |11〉)/

√
2, and
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(|00〉 − |11〉)/
√

2, with equal probability. A conditioned local unitary opera-
tion that is comprised of the identity operation in case of the first outcome,
and of u = |0〉〈0|−|1〉〈1| on the second subsystem in case of the second, yields
the final state (|00〉+ |11〉)/

√
2, which, once again, is entangled. This provides

a second example of a global operation that can create entanglement.
We will see later, however, that the situation is different if we restrict our-

selves to local operations, or, to local operations and classical communication
that we introduce now.

Local Operations and Classical Communication

The most general local operation that acts non-trivially only on the first
subsystem reads

�→
∑

i

(ai ⊗ 1)�(a†i ⊗ 1) ,
∑

i

a†iai = 1 , (2.39)

and analogously for operations on the second subsystem alone. Such opera-
tions do not induce any correlations: They map product states on product
states,

� = ρ(1) ⊗ ρ(2) →
(
∑

i

aiρ
(1)a†i

)

⊗ ρ(2) , (2.40)

and separable states on separable states

� =
∑

i

piρ
(1)
i ⊗ ρ

(2)
i →

∑

i

pi

(∑

j

ajρ
(1)
i a†j

)
⊗ ρ

(2)
i . (2.41)

The situation changes if one allows for a correlated application of such local
operations, where the operation that is applied at a certain instance depends
on the outcomes of previous operations:

� →
∑

i

(ai ⊗ 1)�(a†i ⊗ 1) (2.42a)

→
∑

ij

(1⊗ bij)(ai ⊗ 1)�(a†i ⊗ 1)(1⊗ b†ij) (2.42b)

→
∑

ijp

(cijp ⊗ 1)(1⊗ bij)(ai ⊗ 1)�(a†i ⊗ 1)(1⊗ b†ij)(c
†
ijp ⊗ 1) (2.42c)

→
∑

ijp...q

(1⊗ gijp...q) . . . (ai ⊗ 1)�(a†i ⊗ 1) . . . (1⊗ g†ijp...q) . (2.42d)

In the first step, a local operation has been applied to the first subsystem.
This can be understood as an interaction with an ancillary system and a
subsequent measurement thereon, as discussed before (2.33). Conditioned on
the measurement result that is associated with the collapse on the states
(ai ⊗ 1)�(a†i ⊗ 1), the local operation associated with the operators bij is
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applied to the second subsystem in a consecutive step. And, conditioned on
the outcome of this operation, another local operation is applied to the first
subsystem, and so on.

Such operations are called local operations and classical communication
(LOCC). The idea behind that terminology is that one could imagine two
parties that have access to the individual subsystems, and those parties could
apply their individual operations to their part of the composite system. But
in order to arrive at the above operation, they would need to communicate
with each other, i.e., tell the other party their measurement results. This
communication, however, can be performed via a classical channel, does not
require any quantum nature, and, therefore is referred to as ‘classical’.

LOCC operations can take product states to states no more necessarily
of product form. Thus, it is possible to create correlations with LOCC op-
erations. Yet, since these correlations are based on the classical exchange of
information, they remain correlations of classical nature. Therefore, we can
refine our concept of entangled states by requiring [14, 15] that

an entanglement monotone is a quantity that does not increase under
local operations and classical communication.

Note that this requirement is perfectly compatible with the previous def-
inition of separable and entangled states, since an entangled state cannot be
created from a separable one by LOCC alone, but LOCC suffice to transform
arbitrary separable states into each other.

Invariance of Entanglement Under Local Unitaries

Monotonicity under LOCC as the defining property of an entanglement mono-
tone is in general difficult to verify. We can, however, formulate a simpler,
necessary criterion thereof: among all LOCC operations, the local unitary
transformations �→ U1 ⊗U2�U†

1 ⊗U
†
2 are special since they have an inverse

that is again LOCC. If one applies some arbitrary local unitary in a first step,
and its inverse in a second step, then a monotone M cannot increase after
either step

M(�) ≥M(U1 ⊗ U2 � U†
1 ⊗ U†

2 ) ≥M(�) . (2.43)

However, because initial and final states are equal, so is their entanglement,
and one necessarily concludes that any entanglement monotone is invariant
under local unitaries

M(�) = M(U1 ⊗ U2 � U†
1 ⊗ U†

2 ) . (2.44)

This invariance is significantly easier to check than monotonicity under
LOCC. However, as mentioned above, it provides only a necessary, but not
a sufficient condition.
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Schmidt Coefficients and Majorization

Invariance under local unitary transformations is not only a simple test to
rule out potential candidates for entanglement monotones as non-monotonous
under LOCC, but indeed it has much deeper implications. It implies that any
entanglement monotone can be expressed as a function only of invariants un-
der local unitaries. Consequently, if one can identify these invariants, one
proceeds a big step forward, toward the systematic construction of entangle-
ment monotones. Although the exhaustive search for such invariants turns
out to be a very intricate task for a general state, it has a surprisingly simple
answer in the case of pure states of bipartite systems. There, the Schmidt
coefficients introduced earlier in Sect. 2.3.2 provide a complete set of invari-
ants, and all entanglement properties can be expressed in terms of only those
quantities.

Majorization

One very useful application of the characterization of entanglement in terms
of Schmidt coefficients is a simple test that allows to check whether one
state |Φ〉 can be prepared by LOCC starting from another state |Ψ〉. This is
possible [16, 17] if and only if their Schmidt coefficients, ordered decreasingly
(i.e., λ1 ≥ λ2 ≥ . . .), satisfy the set of inequalities

λ
(Φ)
1 ≥ λ

(Ψ)
1

2∑

i=1

λ
(Φ)
i ≥

2∑

i=1

λ
(Ψ)
i

3∑

i=1

λ
(Φ)
i ≥

3∑

i=1

λ
(Ψ)
i (2.45)

...
...

This set of conditions is often expressed in short-hand notation λ(Φ) � λ(Ψ)

in terms of the Schmidt vectors λ(Φ) = [λ(Φ)
1 , λ

(Φ)
2 , . . .] and similarly for λ(Ψ),

and reads ‘λ(Φ) majorizes λ(Ψ)’, or, also ‘λ(Ψ) is majorized by λ(Φ)’.

An Example

In order to get a bit better idea of how such an LOCC transformation works,
let us look at the exemplary case to start out with the state |Ψ〉 = (|00〉 +
|11〉)/

√
2, and aim at the preparation of the state |Φ〉 =

√
λ1|00〉 +

√
λ2|11〉

using only LOCC operations. This is possible since λ(Φ) actually majorizes
λ(Ψ). However, this majorization criterion does not give a prescription on how
such a transformation can be achieved. Therefore, we will content ourselves
with verifying that the LOCC operation that is comprised of the operators
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a1 =
√
λ1|0〉〈0|+

√
λ2|1〉〈1| , b11 = |0〉〈0|+ |1〉〈1| ,

a2 =
√
λ1|0〉〈1|+

√
λ2|1〉〈0| , b21 = |0〉〈1|+ |1〉〈0| , (2.46)

indeed transforms |Ψ〉 to |Φ〉. First, however, one should verify that the res-
olutions to identity

∑
i a

†
iai = 1 and b†11b11 = b†21b21 = 1 are given. Then,

consider the action of these operators onto the state |Ψ〉. First the ai:

a1|Ψ〉 =

√
λ1

2
|00〉+

√
λ2

2
|11〉 =

1√
2
|Φ〉, (2.47)

a2|Ψ〉 =

√
λ1

2
|01〉+

√
λ2

2
|10〉 . (2.48)

The first term is already proportional to |Φ〉, so that in the next step the
identity operation b11 is applied. But, the second term does not have the
correct form yet. Here, one needs to transform |0〉 of the second subsystem
into |1〉 and vice versa, what is exactly what b21 does. Thus, one obtains
b11a1|Ψ〉 = b21a2|Ψ〉 = 1/

√
2|Φ〉. So all together, the final state reads

∑

ij

ai ⊗ bij |Ψ〉〈Ψ |a†i ⊗ b†ij = |Φ〉〈Φ| . (2.49)

And, this is exactly what we were aiming at.

Inequivalent Entanglement Properties

So far, we found a criterion that excludes some quantities from the list of
potential quantifiers of entanglement, but does not yet define one unique
entanglement measure. Whether such a unique measure exists is still a subject
of debate, and beyond the scope of the present introduction. Let us however
briefly illustrate why the characterization of entanglement by a simple scalar
quantity might reveal problematic.

The entanglement of a pure state of two qubits is characterized by a single
independent Schmidt coefficient due to the normalization of the reduced den-
sity matrix. Therefore, the set of majorization conditions (2.45) reduces to its
first line. For two arbitrary pure states |Ψ1〉 and |Ψ2〉 either both Schmidt vec-
tors coincide, i.e., λ

(Ψ1)
1 = λ

(Ψ2)
1 , or one majorizes the other. That is, there is

an unambiguous order of pure states with respect to their degree of entangle-
ment, and any entanglement monotone will respect this order. The situation
is different in higher dimensional systems as one can see in the exemplary
case of the following two states

|Ψ1〉 =
1√
2
|00〉+

1√
2
|11〉 ,

|Ψ2〉 =

√
3
5
|00〉+

√
1
5
|11〉+

√
1
5
|22〉 . (2.50)
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The Schmidt vectors are λ(Ψ1) = [1/2, 1/2, 0] and λ(Ψ2) = [3/5, 1/5, 1/5],
respectively, and neither does λ(Ψ1) majorize λ(Ψ2), nor vice versa

λ
(Ψ1)
1 = 1

2 <
3
5 = λ

(Ψ2)
1∑2

i=1 λ
(Ψ1)
i = 1 > 4

5 =
∑2

i=1 λ
(Ψ)
i∑3

i=1 λ
(Ψ1)
i = 1 = 1 =

∑3
i=1 λ

(Ψ)
i .

Thus neither can |Ψ1〉 be prepared by LOCC from |Ψ2〉, nor is there an LOCC
operation that takes |Ψ2〉 to |Ψ1〉. This implies that the two states have non-
equivalent entanglement properties, and it is not obvious that either one
can be considered more entangled than the other. In particular, the use of
different entanglement monotones may lead to contradictory conclusions on
the relative entanglement content of both states.

Entanglement Measures

So far, we required only monotonicity under LOCC for a potential entangle-
ment quantifier. There are additional axioms that qualify a monotone as an
entanglement measure. While there is no general agreement on the complete
list of axioms, we list some important ones:

- Mixing two states � and σ probabilistically can increase only classical
correlations. Therefore, one expects that a probabilistic mixture p�+(1−
p)σ, (0 ≤ p ≤ 1), should be no more entangled than the two individual
states on average. This implies convexity of an entanglement measure, i.e.,
M(p�+ (1− p)σ) ≤ pM(�) + (1− p)M(σ).

- Assume one is given n copies of a state � on H1 ⊗H2. This is equivalent
to a single n-fold state �⊗n = �⊗ . . .⊗ �, and one wants to quantify the
entanglement between the subsystems associated with the larger Hilbert
spaces H⊗n

1 and H⊗n
2 . An entanglement monotone that fulfills M(�⊗n) =

nM(�) is called additive.
- Similarly, one can consider two different states � and σ on H1 ⊗H2 and

evaluate the entanglement of the joint state � ⊗ σ on H⊗2
1 ⊗ H⊗2

2 . A
monotone M that satisfies the inequality M(� ⊗ σ) ≤ M(�) +M(σ) is
called subadditive.

2.4.2 Some Specific Monotones and Measures

In the above, we discussed very general properties of entanglement quanti-
fiers. Now we will discuss some more specific entanglement monotones and
measures that are frequently used in the literature.

Pure States

We saw earlier that any entanglement monotone or measure can be expressed
in terms of invariants under local unitary transformations, and that, in the
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case of bipartite pure states, the Schmidt coefficients provide a complete
set thereof. Therefore, we can restrict our discussion to functions F(λ) of the
Schmidt coefficients only. But not every such function is also an entanglement
monotone, i.e., non-increasing under LOCC. The following criterion allows
to verify this property: A function F(λ) is monotonously decreasing under
LOCC if F is invariant under any permutation of the Schmidt coefficients λi,
and if F is Schur concave, i.e., [18]

(λ1 − λ2)
(
∂F
∂λ1

− ∂F
∂λ2

)
≤ 0 (2.51)

It suffices to express the condition for Schur concavity in terms of only the
first two Schmidt coefficients because of the required permutation invariance.
We now evaluate this criterion for a few specific monotones and measures.

Entanglement Entropy

The entanglement entropy, which is the von Neumann entropy of the reduced
density matrix,

E(Ψ) = S(�r) = −tr�r ln �r = −
∑

i

λi lnλi , (2.52)

is indeed invariant under permutation of the λi, satisfies

(λ1 − λ2)
(
∂S(ρr)
∂λ1

− ∂S(ρr)
∂λ2

)
= (λ1 − λ2) ln

λ2

λ1
≤ 0 , (2.53)

and thus is a valid entanglement monotone.

Concurrence

Another frequently used monotone is concurrence c. For bipartite systems, c
is often defined in terms of the local Pauli matrices

σy =
[

0 −i
i 0

]
(2.54)

represented in a given orthonormal basis {|0〉, |1〉} of the factor spaces H1,
and H2 of H [19],

c(Ψ) = |〈Ψ∗|σy ⊗ σy|Ψ〉| . (2.55)

〈Ψ∗| denotes the complex conjugate of 〈Ψ |, with the conjugation performed
in the same basis. That is, if 〈Ψ | reads 〈Ψ | =

∑
ij βij〈ij|, then 〈Ψ∗| reads

〈Ψ∗| =
∑

ij β
∗
ij〈ij|. Equivalently, 〈Ψ∗| is the transpose of |Ψ〉, whereas 〈Ψ | is

the adjoint of |Ψ〉.
A possible generalization of the above definition for higher dimensional

systems (see e.g., [20]) reads [21]
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c(Ψ) =
√

2(1− tr�2
r) , (2.56)

and is equivalent to (2.55), for two-level systems. In terms of the Schmidt
coefficients, concurrence reads

c(Ψ) =
√

2
∑

i�=j

λiλj . (2.57)

This is invariant under permutations of the λi, and since

(λ1−λ2)
(
∂c

∂λ1
− ∂c

∂λ2

)
=

(λ1 − λ2)
2c

⎛

⎝
∑

i�=1

λi −
∑

i�=2

λi

⎞

⎠ = − (λ1 − λ2)2

2c
≤ 0 ,

(2.58)
concurrence is a valid monotone.

Mixed States

For pure states, we were able to give constructive definitions for some entan-
glement measures. In the case of mixed states, however, it turns out to be
much more involved to find a quantity that is monotonously decreasing under
LOCC. The basic difference between mixed and pure states in this specific
context is that pure states bear no classical correlations. These need to be dis-
tinguished from genuine quantum correlations by a mixed state entanglement
monotone.

Negativity

So far, only very few constructively defined quantities were proved to be
non-increasing under LOCC. The most prominent example is negativity [22].
Earlier, in Sect. 2.3.2, we saw that the partial transpose �pt of a mixed state �
can be very helpful to decide on the separability of �: if one of the eigenvalues
λi of �pt is negative, then � is entangled. This inspired the definition of
negativity as

N (�) =
(
∑

i |λi|)− 1
2

, (2.59)

what was proved to be monotonously decreasing under LOCC [22]. If �pt is
positive semi-definite, N vanishes, but takes positive values if �pt has one, or
more negative eigenvalues. In comparison to virtually all other mixed state
entanglement monotoness, N can be evaluated easily, since it is an algebraic
function of the spectrum of �pt. This advantage, however, comes at the price
that negativity assigns non-vanishing entanglement only to those states that
are detected via their negative partial transpose. Therefore, much as for the
ppt-criterion itself, negativity is fully reliable only for 2× 2 or 2× 3 system.
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Convex Roofs

The failure to detect all entangled states finds its remedy with the so-called
convex roof measures. However, the solution to this issue comes at the expense
of an additional optimization problem that prevents the explicit algebraic
evaluation in most cases. Since any mixed state can be decomposed into a
probabilistic mixture of pure states

� =
∑

i

pi|Ψi〉〈Ψi| , (2.60)

with positive prefactors pi, one can characterize the entanglement proper-
ties of � in terms of those of its pure state components. A very sugges-
tive generalization of a pure state monotone for mixed states is the average
value

∑
i piM(Ψi) of the monotone M. However, a mixed state does not

have a unique pure state decomposition, and different decompositions typi-
cally yield different average values. A valid mixed state generalization that
is monotonously decreasing under LOCC is the infimum over all pure state
decompositions, i.e., the minimal average value

M(�) = inf
{pi,|Ψi〉}

∑

i

piM(Ψi) , (2.61)

what is called the convex roof. To solve the optimization problem implicit in
the convex roof definition (2.61), one needs a systematic way to explore all
pure state decompositions of �. Given the eigenstates |Φj〉 of �, together with
the associated eigenvalues μi, any linear combination of the eigenstates

√
pi|Ψi〉 =

∑

j

Vij
√
μj |Φj〉 , (2.62)

defines another valid decomposition [23], provided
∑

k V
†
ikVkj = δjk, i.e., for

a left-unitary coefficient matrix V (with adjoint V †):
∑

i

pi|Ψi〉〈Ψi| =
∑

ijk

Vij
√
μj |Φj〉〈Φk|

√
μkV

∗
ik

=
∑

ijk

V †
kiVij

√
μjμk|Φj〉〈Φk|

=
∑

jk

δjk
√
μjμk|Φj〉〈Φk|

=
∑

j

μj |Φj〉〈Φj | = � ;

(2.63)

and any pure state decomposition of � can be obtained in this fashion [23].
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Concurrence of Mixed States

With this characterization of pure state decompositions at hand, we can now
focus on the evaluation of concurrence for mixed states. So far, concurrence
is virtually the only quantity for which the convex roof can be evaluated
algebraically. Later in Sect. 2.4.2, we will see that also the convex roof of
the entanglement entropy has an algebraic solution. This solution, however
follows from the known solution for concurrence.

A crucial property of concurrence in contrast to other monotones is the
homogeneity,

c(η|Ψ〉〈Ψ |) = η c(|Ψ〉) , for η ≥ 0, (2.64)

which allows to rewrite the convex roof expression above as

c(�) = inf
{|ψi〉}

∑

i

c(ψi) , (2.65)

where everything is expressed in terms of subnormalized states |ψi〉 =
√
pi|Ψi〉,

and the probabilities pi do not enter explicitly any more.
This allows to reformulate (2.61) in the following closed form

c(�) = inf
{|ψi〉}

∑

i

c(ψi)

= inf
{|ψi〉}

∑

i

|〈ψ∗
i |σy ⊗ σy|ψi〉|

= inf
V

∑

i

∣∣∣
∑

jk

Vij〈φ∗
j |σy ⊗ σy|φk〉V T

ki

∣∣∣

= inf
V

∑

i

∣
∣∣[V τV T ]ii

∣
∣∣ ,

(2.66)

where we used (2.55) and (2.62). In the last line, we introduced a short-hand
notation, where τ is a complex symmetric matrix, τ = τT , with elements

τij = 〈φ∗
i |σy ⊗ σy|φj〉 . (2.67)

Equation (2.66) resembles the diagonalization of a hermitean matrix H
through a unitary transformation UHU†, where U is unitary. The differ-
ence resides, however, in the fact that τ is symmetric and not hermitean,
and that the transpose of a unitary, respectively left unitarys, enters instead
of its adjoint. But also a symmetric matrix can be diagonalized in a similar
fashion. Already earlier, in (2.13) we have been invoking the singular value
decomposition of a matrix. It stated that any matrix A could be diagonalized
with two unitary transformations u1 and u2 as u1Au2. This, of course, also
holds for the particular case of a symmetric matrix that we are facing here.
However, in this specific case, u2 is equal to uT

1 . Therefore, we can rephrase
the infimum to be evaluated as
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c(�) = inf
V

∑

i

∣∣∣[V U†UτUTU∗V T ]ii
∣∣∣ = inf

Ṽ

∑

i

∣∣∣[Ṽ τdṼ T ]ii
∣∣∣ , (2.68)

where Ṽ = V U†, and τd = UτUT = diag[S1,S2,S3,S4] is the diagonal form
of τ . The order of the diagonal elements is not determined and can be chosen
arbitrarily. But in the following, we will use the convention that S1 is the
largest of all diagonal entries.

With the diagonal form τd of τ , we have simplified the problem a lot:
instead of 20 real parameter that characterize a general complex symmetric
matrix, we are left with only four real parameters. But it is still not straight-
forward to derive an optimal matrix Ṽ that achieves the infimum. Instead of
a systematic derivation, we are going to take an Ansatz that eventually will
turn out to do the job. Let us take Ṽ equal to V with

V =
1
2

⎡

⎢
⎢
⎣

1 eiϕ2 eiϕ3 eiϕ4

1 eiϕ2 −eiϕ3 −eiϕ4

1 −eiϕ2 eiϕ3 −eiϕ4

1 −eiϕ2 −eiϕ3 eiϕ4

⎤

⎥
⎥
⎦ , (2.69)

where we still have the free phases ϕ2, ϕ3, and ϕ4 that we can adjust. With
this choice, we obtain

∑

i

∣∣∣VτdVT
∣∣∣ =

∣∣∣S1 +
∑

i>1

e2iϕiSi

∣∣∣ . (2.70)

Now, we can minimize this expression by proper choices of the free phases,
what is most conveniently done by distinguishing two cases. In the former
case, where S1 ≥

∑
i>1 Si, it is optimal to take ϕ2 = ϕ3 = ϕ4 = π/2, what

leads to
∑

i |VτdVT | = S1 −
∑

i>1 Si. In the latter case, S1 <
∑

i>1 Si, one
can always find a choice of phases such that

∑
i |VτdVT | = 0, as depicted in

Fig. 2.2. That is, we found a pure state decomposition in which the average

Fig. 2.2. Schematic drawing of the singular values Si added up with adjustable
phases e2iϕi in the complex plane. If S1 >

∑
i>1 Si, as depicted on the left, the

optimal choice to minimize |S1 +
∑

i>1 Sie
2iϕi | of the phases is ϕi = π/2. If, on

the other hand, S1 <
∑

i>1 Si as depicted on the right, then one can always find

phases ϕi such that |S1 +
∑

i>1 Sie
2iϕi | vanishes
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concurrence reads max(S1 −
∑

i>1 Si, 0). However, we still do not know, if
this is optimal, or if there are decompositions that yield a smaller value.

For answering this question, we can restrict ourselves to the case S1 ≥∑
i>1 Si. In the other case, we found a vanishing value for concurrence, which

obviously is the infimum, since concurrence cannot be negative. Now, let us
start out not with τ̃ = VτdVT with the choice ϕ2 = ϕ3 = ϕ4 = π/2 that
we found optimal above. We now show that there is no left-unitary W that
could yield a smaller value than what we have found so far.

∑

i

∣
∣∣[WτdW

T ]ii
∣
∣∣ =

∑

i

∣
∣∣
∑

j

W 2
ijSj

∣
∣∣

=
∑

i

∣∣∣W 2
i1S1 +

∑

j>1

W 2
ijSj

∣∣∣

≥
∑

i

(∣∣∣W 2
i1

∣∣∣S1 −
∣∣∣
∑

j>1

W 2
ijSj

∣∣∣
)

= S1 −
∑

i

∣∣∣
∑

j>1

W 2
ijSj

∣∣∣

≥ S1 −
∑

i

∑

j>1

∣∣∣Wij

∣∣∣
2

Sj

= S1 −
∑

j>1

Sj ,

(2.71)

where going from the second to the third line we used |a + b| ≥ |a| − |b|
with a = W 2

i1S1, and b =
∑

j>1W
2
ijSj , and in the fourth line, we used the

left-unitarity condition of W , i.e.,
∑

i |Wij |2 = 1. We obtained the fifth line
using − |

∑
aj | ≥ −

∑
|aj |, with aj = W 2

ijSj , and the last line followed again
from the left-unitarirty of W . Thus, we found the algebraic solution

c(�) = max(S1 −
∑

i>1

Si, 0) (2.72)

for the concurrence of an arbitrary mixed state of a bipartite two-level system.

Entanglement of Formation of Mixed States

With this solution for concurrence, we can now proceed and consider entan-
glement of formation, which is the convex roof extension of the entanglement
entropy. Here we will make use of the fact that for pure states in bipartite two-
level systems, there is only one independent Schmidt coefficient, since they
sum up to unity. Therefore, one can determine both Schmidt coefficients in
terms of the concurrence:

λ± =
1±

√
1− c2

2
. (2.73)
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And, since the entanglement entropy is a function of λ, it can also be ex-
pressed in terms of concurrence via

E(Ψ) = −1 +
√

1− c2

2
ln

1 +
√

1− c2

2
− 1−

√
1− c2

2
ln

1−
√

1− c2

2
≡ E(c) ,

(2.74)

where we introduced the function E(c). One easily convinces oneself that E(c)
is monotonously increasing ∂E(c)/∂c ≥ 0, and convex ∂2E(c)/∂c2 ≥ 0, for
c ≥ 0. Convexity can equivalently be expressed as

∑
i piE(qi) ≥ E(

∑
i piqi).

With the help of these properties, we arrive at the following reasoning:

E(�) = inf
∑

i

piE(Ψi)

= inf
∑

i

piE(c(Ψi))

≥ inf E(
∑

i

pic(Ψi))

= E(inf
∑

i

pic(Ψi))

= E(c(�)) .

(2.75)

Here, in going from the second to the third line, we used the convexity of
E , and from the third to the fourth its monotonicity. Thus, we found that
entanglement of formation is bounded from below by E(c(�)). But, we are
close to seeing that this is indeed not only a bound but rather the exact
result. The crucial feature here is the fact that there is not a single optimal
decomposition of a mixed state � into pure states that yields the actual value
of concurrence, but there is actually a continuum of optimal decompositions.
And, in particular, there is one, � =

∑
i p̃i|Ψ̃i〉〈Ψ̃i| in which all pure states

do have the same value of concurrence, i.e., c(Ψ̃i) = c(�) [19]. With the
help of this particular decomposition, we can now show that E(c(�)) is not
only a lower bound on entanglement of formation, but actually its exact
value: due to its definition as convex roof, E(�) is bounded from above by its
average value evaluated in any decomposition – in particular {p̃i, |Ψi〉}, i.e.,
E(�) ≤

∑
i p̃iE(c(Ψ̃i)). Now, we can replace c(Ψ̃i) by c(�), so that we end up

with E(�) ≤
∑

i p̃iE(c(�)). And, finally, since the probabilities add up to 1,
we arrive at the conclusion that entanglement of formation is bounded from
above by E(c(�)). Since we found above in (2.75) that it is also bounded from
below by the same quantity, we necessarily need to conclude that these two
quantities coincide:

E(�) = E(c(�)) . (2.76)

Therefore, once one has evaluated concurrence for a mixed state – what can
be done algebraically (2.72) – one can easily also obtain entanglement of
formation.
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3.1 Introduction

This chapter describes relationships between topology and quantum comput-
ing. It is fruitful to move back and forth between topological methods and
the techniques of quantum information theory.1

We sketch the background topology, discuss analogies (such as topological
entanglement and quantum entanglement), show direct correspondences be-
tween certain topological operators (solutions to the Yang–Baxter equation),
and universal quantum gates. We then describe the background for topologi-
cal quantum computing in terms of Temperley–Lieb recoupling theory. This is
a recoupling theory that generalizes standard angular momentum recoupling
theory, generalizes the Penrose theory of spin networks and is inherently topo-
logical. Temperley–Lieb recoupling theory is based on the bracket polynomial
model [2, 3] for the Jones polynomial. It is built in terms of diagrammatic
combinatorial topology. The same structure can be explained in terms of
the SU(2)q quantum group and has relationships with functional integration
and Witten’s approach to topological quantum field theory. Nevertheless, the
approach given here will be unrelentingly elementary. Elementary, does not
necessarily mean simple. In this case, an architecture is built from simple be-
ginnings, and this architecture and its recoupling language can be applied to
many things including, e.g., colored Jones polynomials, Witten–Reshetikhin–
Turaev invariants of three manifolds, topological quantum field theory, and
quantum computing.

In quantum computing, the application of topology is most interesting
because the simplest non-trivial example of the Temperley–Lieb recoupling
theory gives the so-called Fibonacci model. The recoupling theory yields rep-
resentations of the Artin braid group into unitary groups U(n), where n is
a Fibonacci number. These representations are dense in the unitary group,
and it can be used to model quantum computation universally in terms of
representations of the braid group. Hence the term topological quantum
1 This paper is an expanded version of joint work of the authors [1], and it includes

expository and background material.
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computation. In this work, we outline the basics of the TL-Recoupling
Theory, and show explicitly how the Fibonacci model arises from it.

While this chapter attempts to be self-contained, and hence has some ex-
pository material, most of the results are either new or new points of view on
the known results. The material on SU(2) representations of the Artin braid
group is new, and the relationship of this material to the recoupling the-
ory is new. The treatment of elementary cobordism categories is well known,
but new in the context of quantum information theory. The reformulation of
Temperley–Lieb recoupling theory for the purpose of producing unitary braid
group representations is new for quantum information theory and is directly
related to much of the recent work of Freedman and his collaborators. The
treatment of the Fibonacci model in terms of two-strand recoupling theory
is new and at the same time, the most elementary non-trivial example of
the recoupling theory. The models in Sect. 3.11 for quantum computation
of colored Jones polynomials and for quantum computation of the Witten–
Reshetikhin–Turaev invariant are new in this form of the recoupling theory.
They take a particularly simple aspect in this context.

Here is a very condensed presentation of how unitary representations of
the braid group are constructed via topological quantum field theoretic meth-
ods. One has a mathematical particle with label P that can interact with itself
to produce either itself labeled P or itself with the null label ∗. When ∗ in-
teracts with P , the result is always P . When ∗ interacts with ∗, the result
is always ∗. One considers process spaces where a row of particles labeled
P can successively interact, subject to the restriction that the end result is
P . For example, the space V [(ab)c] denotes the space of interactions of three
particles labeled P . The particles are placed in the positions a, b, c. Thus we
begin with (PP )P . In a typical sequence of interactions, the first two P s
interact to produce a ∗, and the ∗ interacts with P to produce P .

(PP )P −→ (∗)P −→ P .

In another possibility, the first two P s interact to produce a P , and the P
interacts with P to produce P .

(PP )P −→ (P )P −→ P .

It follows from this analysis that the space of linear combinations of processes
V [(ab)c] is two dimensional. The two processes we have just described can
be taken to be the qubit basis for this space. One obtains a representation
of the three-strand Artin braid group on V [(ab)c] by assigning appropriate
phase changes to each of the generating processes. One can think of these
phases as corresponding to the interchange of the particles labeled a and b in
the association (ab)c. The other operator for this representation corresponds
to the interchange of b and c. This interchange is accomplished by a unitary
change of basis mapping

F : V [(ab)c] −→ V [a(bc)] .
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If
A : V [(ab)c] −→ V [(ba)c]

is the first braiding operator (corresponding to an interchange of the first two
particles in the association), then the second operator

B : V [(ab)c] −→ V [(ac)b]

is accomplished via the formula B = F−1RF , where the R acts in the second
vector space V [a(bc)] to apply the phases for the interchange of b and c. These
issues are illustrated in Fig. 3.1, where the parenthesization of the particles
is indicated by circles and also by trees. The trees can be taken to indicate
patterns of particle interaction, where two particles interact at the branch of
a binary tree to produce the particle product at the root. See also Fig. 3.27
for an illustration of the braiding B = F−1RF .

In this scheme, vector spaces corresponding to the associated strings of
particle interactions are interrelated by recoupling transformations that gen-
eralize the mapping F indicated above. A full representation of the Artin
braid group on each space is defined in terms of the local interchange phase
gates and the recoupling transformations. These gates and transformations
have to satisfy a number of identities in order to produce a well-defined rep-
resentation of the braid group. These identities were discovered originally

F

R

Fig. 3.1. Braiding anyons
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in relation to topological quantum field theory. In our approach, the struc-
ture of phase gates and recoupling transformations arise naturally from the
structure of the bracket model for the Jones polynomial. Thus we obtain a
knot-theoretic basis for topological quantum computing.

Aspects of the quantum Hall effect are related to topological quantum field
theory [4–7], where, in two dimensional space, the braiding of quasi-particles
or collective excitations leads to non-trival representations of the Artin braid
group. Such particles are called Anyons. It is hoped that the mathematics we
explain here will form the bridge between theoretical models of anyons and
their applications to quantum computing.

3.2 Knots and Braids

The purpose of this section is to give a quick introduction to the diagram-
matic theory of knots, links, and braids. A knot is an embedding of a circle
in three-dimensional space, taken up to ambient isotopy. The problem of de-
ciding whether two knots are isotopic is an example of a placement problem,
a problem of studying the topological forms that can be made by placing one
space inside another. In the case of knot theory, we consider the placements
of a circle inside three-dimensional space. That is, two knots are regarded as
equivalent if one embedding can be obtained from the other through a con-
tinuous family of embeddings of circles in three space. A link is an embedding
of a disjoint collection of circles, taken up to ambient isotopy. Figure 3.2 il-
lustrates a diagram for a knot. The diagram is regarded both as a schematic
picture of the knot and as a plane graph with extra structure at the nodes
(indicating how the curve of the knot passes over or under itself by standard
pictorial conventions).

There are many applications of the theory of knots. Topology is a back-
ground for the physical structure of real knots made from rope of cable. As
a result, the field of practical knot tying is a field of applied topology that
existed well before the mathematical discipline of topology arose. Then again
long molecules such as rubber molecules and DNA molecules can be knotted

Fig. 3.2. A knot diagram
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and linked. There have been a number of intense applications of knot theory
to the study of DNA [8] and to polymer physics [9]. Knot theory is closely
related to theoretical physics as well with applications in quantum gravity
[10–12] and many applications of ideas in physics to the topological structure
of knots themselves [3].

Quantum topology is the study and invention of topological invariants via
the use of analogies and techniques from mathematical physics. Many invari-
ants such as the Jones polynomial are constructed via partition functions and
generalized quantum amplitudes. As a result, one expects to see relationships
between knot theory and physics. In this lecture, we will study how knot the-
ory can be used to produce unitary representations of the braid group. Such
representations can play a fundamental role in quantum computing.

Ambient isotopy is mathematically the same as the equivalence relation
generated on diagrams by the Reidemeister moves. These moves are illus-
trated in Fig. 3.3. Each move is performed on a local part of the diagram
that is topologically identical to the part of the diagram illustrated in this
figure (these figures are representative examples of the types of Reidemeister
moves), without changing the rest of the diagram. The Reidemeister moves
are useful in doing combinatorial topology with knots and links, notably in
working out the behavior of knot invariants. A knot invariant is a function de-
fined from knots and links to some other mathematical object (such as groups
or polynomials or numbers) such that equivalent diagrams are mapped to
equivalent objects (isomorphic groups, identical polynomials, identical num-
bers). The Reidemeister moves are of great use for analyzing the structure of
knot invariants, and they are closely related to the Artin braid group, which
we discuss below.

Another significant structure related to knots and links is the Artin braid
group. A braid is an embedding of a collection of strands that have their ends
top and bottom row points in two rows of points that are set one above the
other with respect to a choice of vertical. The strands are not individually

I

II

III

Fig. 3.3. The Reidemeister moves
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knotted, and they are disjoint from one another. See Figs. 3.4, 3.5, and 3.6,
for illustrations of braids and moves on braids. Braids can be multiplied by
attaching the bottom row of one braid to the top row of the other braid.

–1

=

=

=

s1

s1 s2

s3

Braid Generators

s1   s1 = 1
–1

s1 s2 s1 = s2 s1 s2

s1 s3 = s3 s1

Fig. 3.4. Braid generators

Hopf Link

Figure Eight Knot

Trefoil Knot

Fig. 3.5. Closing braids to form knots and links

b CL(b)

Fig. 3.6. Borromean rings as a braid closure
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Taken up to ambient isotopy, fixing the endpoints, the braids form a group
under this notion of multiplication. In Fig. 3.4, we illustrate the form of the
basic generators of the braid group and the form of the relations among these
generators. Figure 3.5 illustrates how to close a braid by attaching the top
strands to the bottom strands by a collection of parallel arcs. A key theorem
of Alexander states that every knot or link can be represented as a closed
braid. Thus the theory of braids is critical to the theory of knots and links.
Figure 3.6 illustrates the famous Borromean rings (a link of three unknotted
loops such that any two of the loops are unlinked) as the closure of a braid.

Let Bn denote the Artin braid group on n strands. We recall here that
Bn is generated by elementary braids {s1, · · · , sn−1} with relations

1. sisj = sjsi for |i− j| > 1,
2. sisi+1si = si+1sisi+1 for i = 1, · · ·n− 2.

See Fig. 3.4 for an illustration of the elementary braids and their relations.
Note that the braid group has a diagrammatic topological interpretation,
where a braid is an intertwining of strands that lead from one set of n points to
another set of n points. The braid generators si are represented by diagrams,
where the ith and (i + 1)th strands wind around one another by a single
half-twist (the sense of this turn is shown in Fig. 3.4), and all other strands
drop straight to the bottom. Braids are diagrammed vertically as in Fig. 3.4,
and the products are taken in order from top to bottom. The product of two
braid diagrams is accomplished by adjoining the top strands of one braid to
the bottom strands of the other braid.

In Fig. 3.4, we have restricted the illustration to the four-stranded braid
group B4. In that figure, the three braid generators of B4 are shown, and
then the inverse of the first generator is drawn. Following this, one sees the
identities s1s−1

1 = 1 (where the identity element in B4 consists in four vertical
strands), s1s2s1 = s2s1s2, and finally s1s3 = s3s1.

Braids are a key structure in mathematics. It is not just that they are a
collection of groups with a vivid topological interpretation. From the algebraic
point of view, the braid groups Bn are important extensions of the symmetric
groups Sn. Recall that the symmetric group Sn of all permutations of n
distinct objects has presentation as shown below:

1. s2i = 1 for i = 1, · · ·n− 1,
2. sisj = sjsi for |i− j| > 1,
3. sisi+1si = si+1sisi+1 for i = 1, · · ·n− 2.

Thus Sn is obtained from Bn by setting the square of each braiding generator
equal to one. We have an exact sequence of groups

1 −→ Bn −→ Sn −→ 1,

exhibiting the Artin braid group as an extension of the symmetric group.
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In the next sections, we shall show how representations of the Artin braid
group are rich enough to provide a dense set of transformations in the uni-
tary groups. Thus the braid groups are in principle fundamental to quantum
computation and quantum information theory.

3.3 Quantum Mechanics and Quantum Computation

We shall quickly indicate the basic principles of quantum mechanics. The
quantum information context encapsulates a concise model of quantum the-
ory:

The initial state of a quantum process is a vector |v〉 in a complex
vector space H. Measurement returns basis elements β of H with
probability

|〈β |v〉|2/〈v |v〉 ,
where 〈v |w〉 = v†w with v† the conjugate transpose of v. A physical
process occurs in steps |v〉 −→ U |v〉 = |Uv〉 where U is a unitary
linear transformation.
Note that since 〈Uv |Uw〉 = 〈v |U†U |w〉 = 〈v |w〉 when U is unitary,
it follows that probability is preserved in the course of a quantum
process.

One of the details for any specific quantum problem is the nature of the
unitary evolution. This is specified by knowing appropriate information about
the classical physics that supports the phenomena. This information is used
to choose an appropriate Hamiltonian through which the unitary operator
is constructed via a correspondence principle that replaces classical variables
with appropriate quantum operators. (In the path integral approach, one
needs a Langrangian to construct the action on which the path integral is
based.) One needs to know certain aspects of classical physics to solve any
specific quantum problem.

A key concept in the quantum information viewpoint is the notion of the
superposition of states. If a quantum system has two distinct states |v〉 and
|w〉, then it has infinitely many states of the form a|v〉+ b|w〉, where a and b
are complex numbers taken up to a common multiple. States are “really” in
the projective space associated with H. There is only one superposition of a
single state |v〉 with itself.

Dirac [13] introduced the “bra-(c)-ket” notation 〈A |B〉 = A†B for the
inner product of complex vectors A,B ∈ H. He also separated the parts of
the bracket into the bra 〈A | and the ket |B〉. Thus

〈A |B〉 = 〈A | |B〉 .

In this interpretation, the ket |B〉 is identified with the vector B ∈ H, while
the bra 〈A | is regarded as the element dual to A in the dual space H∗.
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The dual element to A corresponds to the conjugate transpose A† of the
vector A, and the inner product is expressed in conventional language by the
matrix product A†B (which is a scalar since B is a column vector). Having
separated the bra and the ket, Dirac can write the “ket-bra” |A〉〈B | = AB†.
In conventional notation, the ket-bra is a matrix, not a scalar, and we have
the following formula for the square of P = |A〉〈B |:

P 2 = |A〉〈B ||A〉〈B | = A(B†A)B† = (B†A)AB† = 〈B |A〉P .

The standard example is a ket-bra P = |A 〉〈A|, where 〈A |A〉 = 1 so that
P 2 = P . Then P is a projection matrix, projecting to the subspace of H that
is spanned by the vector |A〉. In fact, for any vector |B〉, we have

P |B〉 = |A〉〈A | |B〉 = |A〉〈A |B〉 = 〈A |B〉|A〉 .

If {|C1〉, |C2〉, · · · |Cn〉} is an orthonormal basis for H, and

Pi = |Ci 〉〈Ci| ,

then for any vector |A〉, we have

|A〉 = 〈C1 |A〉|C1〉+ · · ·+ 〈Cn |A〉|Cn〉 .

Hence
〈B |A〉 = 〈B |C1〉〈C1 |A〉+ · · ·+ 〈B |Cn〉〈Cn |A〉 .

One wants the probability of starting in state |A〉 and ending in state |B〉.
The probability for this event is equal to |〈B |A〉|2. This can be refined if we
have more knowledge. If the intermediate states |Ci〉 are a complete set of
orthonormal alternatives, then we can assume that 〈Ci |Ci〉 = 1 for each i
and that Σi|Ci〉〈Ci| = 1. This identity now corresponds to the fact that 1 is
the sum of the probabilities of an arbitrary state being projected into one of
these intermediate states.

If there are intermediate states between the intermediate states, this for-
mulation can be continued until one is summing over all possible paths from
A to B. This becomes the path integral expression for the amplitude 〈B|A〉.

3.3.1 What Is a Quantum Computer?

A quantum computer is, abstractly, a composition U of unitary transforma-
tions, together with an initial state and a choice of measurement basis. One
runs the computer by repeatedly initializing it, and then measuring the result
of applying the unitary transformation U to the initial state. The results of
these measurements are then analyzed for the desired information that the
computer was set to determine. The key to using the computer is the design
of the initial state and the design of the composition of unitary transforma-
tions. The reader should consult [14] for more specific examples of quantum
algorithms.



96 L.H. Kauffman and S.J. Lomonaco

Let H be a given finite-dimensional vector space over the complex num-
bers C. Let {W0,W1, . . . ,Wn} be an orthonormal basis for H so that with
|i〉 := |Wi〉 denoting Wi and 〈i| denoting the conjugate transpose of |i〉, we
have

〈i|j〉 = δij ,

where δij denotes the Kronecker delta (equal to one when its indices are
equal to one another, and equal to zero otherwise). Given a vector v in H let
|v|2 := 〈v|v〉. Note that 〈i|v is the ith coordinate of v. A measurement of v
returns one of the coordinates |i〉 of v with probability |〈i|v|2. This model of
measurement is a simple instance of the situation with a quantum mechanical
system that is in a mixed state until it is observed. The result of observation
is to put the system into one of the basis states.

When the dimension of the space H is two (n = 2), a vector in the space
is called a qubit . A qubit represents one quantum of binary information. On
measurement, one obtains either the ket |0〉 or the ket |1〉. This constitutes
the binary distinction that is inherent in a qubit. Note however that the
information obtained is probabilistic. If the qubit is

|ψ〉 = α|0〉+ β |1〉 ,
then the ket |0〉 is observed with probability |α|2, and the ket |1〉 is observed
with probability |β|2. In speaking of an idealized quantum computer, we
do not specify the nature of measurement process beyond these probability
postulates.

In the case of general dimension n of the space H, we will call the vectors
in H qunits. It is quite common to use spaces H that are tensor products
of two-dimensional spaces (so that all computations are expressed in terms
of qubits), but this is not necessary in principle. One can start with a given
space, and later work out factorizations into qubit transformations.

A quantum computation consists in the application of a unitary transfor-
mation U to an initial qunit ψ = a0|0〉 + . . . + an|n〉 with |ψ|2 = 1, plus a
measurement of Uψ. A measurement of Uψ returns the ket |i〉 with proba-
bility |〈i|Uψ|2. In particular, if we start the computer in the state |i〉, then
the probability that it will return the state |j〉 is |〈j|U |i〉|2.

It is the necessity for writing a given computation in terms of unitary
transformations, and the probabilistic nature of the result that characterizes
quantum computation. Such computation could be carried out by an idealized
quantum mechanical system. It is hoped that such systems can be physically
realized.

3.4 Braiding Operators and Universal Quantum Gates

A class of invariants of knots and links called quantum invariants can be
constructed using representations of the Artin braid group, and more specif-
ically using solutions to the Yang–Baxter equation [15], first discovered in
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relation to 1+1-dimensional quantum field theory, and 2-dimensional statis-
tical mechanics. Braiding operators feature in constructing representations
of the Artin braid group, and in the construction of invariants of knots and
links.

A key concept in the construction of quantum link invariants is the as-
sociation of a Yang–Baxter operator R to each elementary crossing in a link
diagram. The operator R is a linear mapping

: V ⊗ V −→ V ⊗ V

defined on the 2-fold tensor product of a vector space V , generalizing the
permutation of the factors (i.e., generalizing a swap gate when V represents
one qubit). Such transformations are not necessarily unitary in topological
applications. It is useful to understand when they can be replaced by unitary
transformations for the purpose of quantum computing. Such unitary R-
matrices can be used to make unitary representations of the Artin braid
group.

A solution to the Yang–Baxter equation, as described in the last para-
graph is a matrix R, regarded as a mapping of a 2-fold tensor product of a
vector space V ⊗ V to itself that satisfies the equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R) .

From the point of view of topology, the matrix R is regarded as representing
an elementary bit of braiding represented by one string crossing over another.
In Fig. 3.7, we have illustrated the braiding identity that corresponds to the
Yang–Baxter equation. Each braiding picture with its three input lines (be-
low) and output lines (above) corresponds to a mapping of the 3-fold tensor
product of the vector space V to itself, as required by the algebraic equation
quoted above. The pattern of placement of the crossings in the diagram cor-
responds to the factors R ⊗ I and I ⊗ R. This crucial topological move has
an algebraic expression in terms of such a matrix R. Our approach in this
section to relate topology, quantum computing, and quantum entanglement
is through the use of the Yang–Baxter equation. In order to accomplish this

=

RIR I

RI

RI

RI

R I

R I

R I

Fig. 3.7. The Yang–Baxter equation – (R⊗I)(I⊗R)(R⊗I) = (I⊗R)(R⊗I)(I⊗R)
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aim, we need to study solutions of the Yang–Baxter equation that are unitary.
Then the R matrix can be seen either as a braiding matrix or as a quantum
gate in a quantum computer.

The problem of finding solutions to the Yang–Baxter equation that are
unitary turns out to be surprisingly difficult. Dye [16] has classified all such
matrices of size 4 × 4. A rough summary of her classification is that all
4× 4 unitary solutions to the Yang–Baxter equation are similar to one of the
following types of matrix:

R =

⎛

⎜⎜
⎝

1/
√

2 0 0 1/
√

2
0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
−1/

√
2 0 0 1/

√
2

⎞

⎟⎟
⎠ ,

R′ =

⎛

⎜⎜
⎝

a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d

⎞

⎟⎟
⎠ ,

R′′ =

⎛

⎜
⎜
⎝

0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0

⎞

⎟
⎟
⎠ ,

where a, b, c, and d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix

as acting on the standard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V , where
V is a two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉 ,
R|01〉 = (1/

√
2)|01〉+ (1/

√
2)|10〉 ,

R|10〉 = −(1/
√

2)|01〉+ (1/
√

2)|10〉 ,
R|11〉 = (1/

√
2)|00〉+ (1/

√
2)|11〉 .

The reader should note that R is the familiar change-of-basis matrix from
the standard basis to the Bell basis of entangled states. In the case of R′, we
have

R′|00〉 = a|00〉 , R′|01〉 = c|10〉 ,
R′|10〉 = b|01〉 , R′|11〉 = d|11〉 .

Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S,

P =

⎛

⎜⎜
⎝

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎞

⎟⎟
⎠ , S =

⎛

⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟
⎠ .
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Compositions of solutions of the (Braiding) Yang–Baxter equation with the
swap gate S are called solutions to the algebraic Yang–Baxter equation. Thus
the diagonal matrix P is a solution to the algebraic Yang–Baxter equation.

Remark 1. Another avenue related to unitary solutions to the Yang–Baxter
equation as quantum gates comes from using extra physical parameters in
this equation (the rapidity parameter) that are related to statistical physics.
In [17] we discovered that solutions to the Yang–Baxter equation with the
rapidity parameter allow many new unitary solutions. The significance of
these gates for quantum computing is still under investigation.

3.4.1 Universal Gates

A two-qubit gate G is a unitary linear mapping G : V ⊗V −→ V , where V is
a two complex dimensional vector space. We say that the gate G is universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V to V ) generates all unitary
transformations of the complex vector space of dimension 2n to itself. It is
well known [14] that CNOT is a universal gate.2

A gate G, as above, is said to be entangling if there is a vector

|αβ〉 = |α〉 ⊗ |β〉 ∈ V ⊗ V

such that G|αβ〉 is not decomposable as a tensor product of two qubits. Under
these circumstances, one says that G|αβ〉 is entangled.

In [18], the Brylinskis give a general criterion of G to be universal. They
prove that a two-qubit gate G is universal if and only if it is entangling.

Remark 2. A two-qubit pure state

|φ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉

is entangled exactly when (ad − bc) �= 0. It is easy to use this fact to check
when a specific matrix is, or is not, entangling.

Remark 3. There are many gates other than CNOT that can be used as uni-
versal gates in the presence of local unitary transformations. Some of these
are themselves topological (unitary solutions to the Yang–Baxter equation,
see [19]) and themselves generate representations of the Artin braid Group.
Replacing CNOT by a solution to the Yang–Baxter equation does not place
the local unitary transformations as part of the corresponding representation
of the braid group. Thus such substitutions connote only a partial solution to
creating topological quantum computation. In this lecture, we are concerned
2 On the standard basis, CNOT is the identity when the first qubit is 0, and it

flips the second qubit, leaving the first alone, when the first qubit is 1.
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with braid group representations that include all aspects of the unitary group.
Accordingly, in the next section we shall first examine, how the braid group
on three strands can be represented as local unitary transformations.

Theorem 1. Let D denote the phase gate shown below. D is a solution to
the algebraic Yang–Baxter equation (see the earlier discussion in this section).
Then D is a universal gate.

D =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟
⎟
⎠ .

Proof. It follows at once from the Brylinski Theorem that D is universal. For
a more specific proof, note that CNOT = QDQ−1, where Q = H ⊗ I, H is
the 2 × 2 Hadamard matrix. The conclusion then follows at once from this
identity and the discussion above. We illustrate the matrices involved in this
proof below:

H =
1√
2

(
1 1
1 −1

)
, Q =

1√
2

⎛

⎜⎜
⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞

⎟⎟
⎠ , D =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟
⎠ ,

QDQ−1 = QDQ =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠ = CNOT .

This completes the proof of the Theorem.3 ��

Theorem 2. The matrix solutions R′ and R′′ to the Yang–Baxter equation,
described above, are universal gates exactly when ad−bc �= 0 for their internal
parameters a, b, c, d. In particular, let R0 denote the solution R′ (above) to
the Yang–Baxter equation with a = b = c = 1, d = −1,

R0 =

⎛

⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞

⎟⎟
⎠ .

Then R0 is a universal gate.

Proof. The first part follows at once from the Brylinski Theorem. In fact,
letting H be the Hadamard matrix as before, and
3 We thank Martin Roetteler (private conversation, fall 2003) for pointing out the

specific factorization of CNOT used in this proof.
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σ =
(

1/
√

2 i/
√

2
i/
√

2 1/
√

2

)
, λ =

(
1/
√

2 1/
√

2
i/
√

2 −i/
√

2

)
, μ =

(
(1− i)/2 (1 + i)/2
(1− i)/2 (−1− i)/2

)
.

Then
CNOT = (λ⊗ μ)(R0(I ⊗ σ)R0)(H ⊗H) .

This gives an explicit expression for CNOT in terms of R0 and local unitary
transformations (for which we thank Ben Reichardt). ��

Remark 4. Let SWAP denote the Yang–Baxter Solution R′ with a = b = c =
d = 1,

SWAP =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ .

SWAP is the standard swap gate. Note that SWAP is not a universal gate.
This also follows from the Brylinski Theorem, since SWAP is not entangling.
Note also that R0 is the composition of the phase gate D with this swap gate.

Theorem 3. Let

R =

⎛

⎜⎜
⎝

1/
√

2 0 0 1/
√

2
0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
−1/

√
2 0 0 1/

√
2

⎞

⎟⎟
⎠

be the unitary solution to the Yang–Baxter equation discussed above. Then R
is a universal gate. The proof below gives a specific expression for CNOT in
terms of R.

Proof. This result follows at once from the Brylinksi Theorem, since R is
highly entangling. For a direct computational proof, it suffices to show that
CNOT can be generated from R and local unitary transformations. Let

α =
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
, β =

(
−1/

√
2 1/

√
2

i/
√

2 i/
√

2

)
,

γ =
(

1/
√

2 i/
√

2
1/
√

2 −i/
√

2

)
, δ =

(
−1 0
0 −i

)
.

Let M = α⊗ β and N = γ ⊗ δ. Then it is straightforward to verify that

CNOT = MRN .

This completes the proof.4 ��

4 See [19] for more information about these calculations.
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3.5 A Remark About EPR, Entanglement
and Bell’s Inequality

It is remarkable that the simple algebraic situation of an element in a ten-
sor product that is not itself a tensor product of elements of the factors
corresponds to subtle nonlocality in physics. It helps to place this algebraic
structure in the context of a gedanken experiment to see where the physics
comes in. Consider

S = (|0〉|1〉+ |1〉|0〉)/
√

2 .

In an EPR thought experiment, we think of two “parts” of this state that
are separated in space. We want a notation for these parts and suggest the
following:

L = ({|0〉}|1〉+ {|1〉}|0〉)/
√

2 ,

R = (|0〉{|1〉}+ |1〉{|0〉})/
√

2 .

In the left state L, an observer can only observe the left-hand factor. In
the right state R, an observer can only observe the right-hand factor. These
“states” L and R together comprise the EPR state S, but they are accessible
individually just as are the two photons in the usual thought experiment.
One can transport L and R individually and we shall write

S = L ∗R

to denote that they are the “parts” (but not tensor factors) of S.
The curious thing about this formalism is that it includes a little bit of

macroscopic physics implicitly, and so it makes it a bit more apparent what
EPR was concerned about. After all, lots of things that we can do to L or R
do not affect S. For example, transporting L from one place to another, as
in the original experiment where the photons separate. On the other hand, if
Alice has L and Bob has R and Alice performs a local unitary transformation
on “her” tensor factor, this applies to both L and R since the transformation
is actually being applied to the state S. This is also a “spooky action at a
distance” whose consequence does not appear until a measurement is made.

To go a bit deeper, it is worthwhile seeing what entanglement, in the sense
of tensor indecomposability, has to do with the structure of the EPR thought
experiment. To this end, we look at the structure of the Bell inequalities using
the Clauser, Horne, Shimony, and Holt (CHSH) formalism as explained in the
book by Nielsen and Chuang [14]. For this we use the following observables
with eigenvalues ±1:

Q =
(

1 0
0 −1

)

1

, R =
(

0 1
1 0

)

1

,

S =
1√
2

(
−1 −1
−1 1

)

2

, T =
1√
2

(
1 −1
−1 −1

)

2

.
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The subscripts 1 and 2 on these matrices indicate that they are to operate on
the first- and second-tensor factors, respectively, of a quantum state of the
form

φ = a|00〉+ b|01〉+ c|10〉+ d|11〉 .
To simplify the results of this calculation, we shall here assume that the
coefficients a, b, c, and d are real numbers. We calculate the quantity

Δ = 〈φ|QS|φ〉+ 〈φ|RS|φ〉+ 〈φ|RT |φ〉 − 〈φ|QT |φ〉 ,
finding that

Δ = (2− 4(a+ d)2 + 4(ad− bc))/
√

2 .

Classical probability calculation with random variables of value ±1 gives the
value of QS + RS + RT −QT = ±2 (with each of Q, R, S, and T equal to
±1). Hence the classical expectation satisfies the Bell inequality

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2 .

That quantum expectation is not classical and is embodied in the fact that
Δ can be greater than 2. The classic case is that of the Bell state

φ = (|01〉 − |10〉)/
√

2 .

Here
Δ = 6/

√
2 > 2 .

In general, we see that the following inequality is needed in order to violate
the Bell inequality

(2− 4(a+ d)2 + 4(ad− bc))/
√

2 > 2 .

This is equivalent to

(
√

2− 1)/2 < (ad− bc)− (a+ d)2 .

Since we know that φ is entangled exactly when ad−bc is non-zero, this shows
that an unentangled state cannot violate the Bell inequality. This formula also
shows that it is possible for a state to be entangled and yet not violate the
Bell inequality. For example, if

φ = (|00〉 − |01〉+ |10〉+ |11〉)/2 ,
then Δ(φ) satisfies Bell’s inequality, but φ is an entangled state. We see from
this calculation that entanglement in the sense of tensor indecomposability
and entanglement in the sense of Bell inequality violation for a given choice
of Bell operators are not equivalent concepts. On the other hand, Benjamin
Schumacher has pointed out [20] that any entangled two-qubit state will vio-
late Bell inequalities for an appropriate choice of operators. This deepens the
context for our question of the relationship between topological entanglement
and quantum entanglement. The Bell inequality violation is an indication of
quantum mechanical entanglement. One’s intuition suggests that it is this
sort of entanglement that should have a topological context.
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3.6 The Aravind Hypothesis

Link diagrams can be used as graphical devices and holders of information. In
this vein, Aravind [21] proposed that the entanglement of a link should corre-
spond to the entanglement of a state. Measurement of a link would be modeled
by deleting one component of the link. A key example is the Borromean rings
(see Fig. 3.8).

Fig. 3.8. Borromean rings

Deleting any component of the Borromean rings yields a remaining pair of
unlinked rings. The Borromean rings are entangled, but any two of them are
unentangled. In this sense, the Borromean rings are analogous to the GHZ
state |GHZ〉 = (1/

√
2)(|000〉+ |111〉). Measurement in any factor of the GHZ

yields an unentangled state. Aravind points out that this property is basis
dependent. We point out that there are states whose entanglement after a
measurement is a matter of probability (via quantum amplitudes). Consider
for example the state

|ψ〉 = (1/2)(|000〉+ |001〉+ |101〉+ |110〉) .
Measurement in any coordinate yields an entangled or an unentangled state
with equal probability. For example

|ψ〉 = (1/2)(|0〉(|00〉+ |01〉) + |1〉(|01〉+ |10〉)) ,
so that projecting to |0〉 in the first coordinate yields an unentangled state,
while projecting to |1〉 yields an entangled state, each with equal probability.

New ways to use link diagrams must be invented to map the properties
of such states (see [22]).

3.7 SU(2) Representations of the Artin Braid Group

The purpose of this section is to determine all the representations of the
three strand Artin braid group B3 to the special unitary group SU(2) and



3 Topology and Quantum Computing 105

concomitantly to the unitary group U(2). One regards the groups SU(2) and
U(2) as acting on a single qubit, and so U(2) is usually regarded as the group
of local unitary transformations in a quantum information setting. If one is
looking for a coherent way to represent all unitary transformations by way
of braids, then U(2) is the place to start. Here we will show that there are
many representations of the three-strand braid group that generate a dense
subset of U(2). Thus it is a fact that local unitary transformations can be
“generated by braids” in many ways.

We begin with the structure of SU(2). A matrix in SU(2) has the form

M =
(

z w
−w̄ z̄

)
,

where z and w are complex numbers, and z̄ denotes the complex conjugate of
z. To be in SU(2), it is required that det(M) = 1 and that M† = M−1 where
det denotes determinant, and M† is the conjugate transpose of M . Thus if
z = a+ bi and w = c+di where a, b, c, d are real numbers, and i2 = −1, then

M =
(
a+ bi c+ di
−c+ di a− bi

)

with a2 + b2 + c2 + d2 = 1. It is convenient to write

M = a

(
1 0
0 1

)
+ b

(
i 0
0 −i

)
+ c

(
0 1
−1 0

)
+ d

(
0 i
i 0

)
,

and to abbreviate this decomposition as

M = a+ bi+ cj + dk ,

where

1 ≡
(

1 0
0 1

)
, i ≡

(
i 0
0 −i

)
, j ≡

(
0 1
−1 0

)
, k ≡

(
0 i
i 0

)
,

so that
i2 = j2 = k2 = ijk = −1

and

ij = k , jk = i , ki = j

ji = −k , kj = −i , ik = −j .

The algebra of 1, i, j, k is called the quaternions after William Rowan Hamil-
ton who discovered this algebra prior to the discovery of matrix algebra. Thus
the units are identified with SU(2) in this way. We shall use this identifica-
tion, and some facts about the quaternions to find the SU(2) representations
of braiding. First we recall some facts about the quaternions.
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1. Note that if q = a+ bi+ cj + dk (as above), then q† = a− bi− cj − dk so
that qq† = a2 + b2 + c2 + d2 = 1.

2. A general quaternion has the form q = a+ bi+ cj+ dk, where the value of
qq† = a2 + b2 + c2 +d2 is not fixed to unity. The length of q is by definition√
qq†.

3. A quaternion of the form ri+ sj + tk for real numbers r, s, t is said to be
a pure quaternion. We identify the set of pure quaternions with the vector
space of triples (r, s, t) of real numbers R3.

4. Thus a general quaternion has the form q = a + bu, where u is a pure
quaternion of unit length, and a and b are arbitrary real numbers. A unit
quaternion (element of SU(2)) has the addition property that a2 + b2 = 1.

5. If u is a pure unit length quaternion, then u2 = −1. Note that the set of
pure unit quaternions forms the two-dimensional sphere S2 = {(r, s, t)|r2+
s2 + t2 = 1} in R3.

6. If u, v are pure quaternions, then

uv = −u · v + u× v ,

where u ·v is the dot product of the vectors u and v, and u×v is the vector
cross product of u and v. In fact, one can take the definition of quaternion
multiplication as

(a+ bu)(c+ dv) = ac+ bc(u) + ad(v) + bd(−u · v + u× v) ,

and all the above properties are consequences of this definition. Note that
quaternion multiplication is associative.

7. Let g = a + bu be a unit length quaternion so that u2 = −1 and a =
cos(θ/2), b = sin(θ/2) for a chosen angle θ. Define φg : R3 −→ R3 by
the equation φg(P ) = gPg†, for P any point in R3, regarded as a pure
quaternion. Then φg is an orientation preserving rotation of R3 (hence an
element of the rotation group SO(3)). Specifically, φg is a rotation about
the axis u by the angle θ. The mapping

φ : SU(2) −→ SO(3)

is a two-to-one surjective map from the special unitary group to the rota-
tion group. In quaternionic form, this result was proved by Hamilton and
by Rodrigues in the middle of the nineteenth century. The specific formula
for φg(P ) is shown below:

φg(P ) = gPg−1 = (a2 − b2)P + 2ab(P × u) + 2(P · u)b2u .

We want a representation of the three-strand braid group in SU(2). This
means that we want a homomorphism ρ : B3 −→ SU(2), and hence we want
elements g = ρ(s1) and h = ρ(s2) in SU(2) representing the braid group
generators s1 and s2. Since s1s2s1 = s2s1s2 is the generating relation for B3,



3 Topology and Quantum Computing 107

the only requirement on g and h is that ghg = hgh. We rewrite this relation
as h−1gh = ghg−1 and analyze its meaning in the unit quaternions.

Suppose that g = a + bu and h = c + dv, where u and v are unit pure
quaternions so that a2 + b2 = 1 and c2 + d2 = 1, then ghg−1 = c + dφg(v)
and h−1gh = a + bφh−1(u). Thus it follows from the braiding relation that
a = c, b = ±d, and that φg(v) = ±φh−1(u). However, in the case where there
is a minus sign, we have g = a + bu and h = a − bv = a + b(−v). Thus we
can now prove the following theorem.

Theorem 4. If g = a + bu and h = c + dv are pure unit quaternions, then,
without loss of generality, the braid relation ghg = hgh is true if and only
if h = a + bv, and φg(v) = φh−1(u). Furthermore, given that g = a + bu
and h = a + bv, the condition φg(v) = φh−1(u) is satisfied if and only if
u · v = a2−b2

2b2 when u �= v. If u = v, then g = h, and the braid relation is
trivially satisfied.

Proof. We have proved the first sentence of the theorem in the discussion prior
to its statement. Therefore assume that g = a+ bu, h = a+ bv, and φg(v) =
φh−1(u). We have already stated the formula for φg(v) in the discussion about
quaternions:

φg(v) = gvg−1 = (a2 − b2)v + 2ab(v × u) + 2(v · u)b2u .

By the same token, we have

φh−1(u) = h−1uh

= (a2 − b2)u+ 2ab(u×−v) + 2(u · (−v))b2(−v)
= (a2 − b2)u+ 2ab(v × u) + 2(v · u)b2(v) .

Hence we require that

(a2 − b2)v + 2(v · u)b2u = (a2 − b2)u+ 2(v · u)b2(v) .

This equation is equivalent to

2(u · v)b2(u− v) = (a2 − b2)(u− v) .

If u �= v, then this implies that

u · v =
a2 − b2

2b2
.

This completes the proof of the Theorem. ��

Example 1. Let
g = eiθ = a+ bi ,

where a = cos(θ) and b = sin(θ). Let
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h = a+ b[(c2 − s2)i+ 2csk] ,

where c2 + s2 = 1 and c2 − s2 = a2−b2

2b2 . Then we can reexpress g and h in
matrix form as the matrices G and H. Instead of writing the explicit form of
H, we write H = FGF †, where F is an element of SU(2) as shown below:

G =
(
eiθ 0
0 e−iθ

)
, F = i

(
c s
s −c

)
.

This representation of braiding, where one generator G is a simple matrix of
phases, while the other generator H = FGF † is derived from G by conjuga-
tion by a unitary matrix, has the possibility for generalization to representa-
tions of braid groups (on greater than three strands) to SU(n) or U(n) for
n greater than 2. In fact we shall see just such representations constructed
later in this paper, using a version of topological quantum field theory. The
simplest example is given by

g = e7πi/10 ,

f = iτ + k
√
τ ,

h = frf−1 ,

where τ2 + τ = 1. Then g and h satisfy ghg = hgh and generate a represen-
tation of the three-strand braid group that is dense in SU(2). We shall call
this the Fibonacci representation of B3 to SU(2).

Remark 5 (Density). Consider representations of B3 into SU(2) produced by
the method of this section. That is consider the subgroup SU [G,H] of SU(2)
generated by a pair of elements {g, h} such that ghg = hgh. We wish to
understand when such a representation will be dense in SU(2). We need the
following lemma.

Lemma 1. eaiebjeci = cos(b)ei(a+c) + sin(b)ei(a−c)j. Hence any element of
SU(2) can be written in the form eaiebjeci for appropriate choices of angles
a, b, c. In fact, if u and v are linearly independent unit vectors in R3, then
any element of SU(2) can be written in the form

eauebvecu

for appropriate choices of the real numbers a, b, c.

Proof. It is easy to check that

eaiebjeci = cos(b)ei(a+c) + sin(b)ei(a−c)j .

This completes the verification of the identity in the statement of the Lemma.
Let v be any unit direction in R3 and λ an arbitrary angle. We have
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evλ = cos(λ) + sin(λ)v ,

and
v = r + si+ (p+ qi)j ,

where r2 + s2 + p2 + q2 = 1. So

evλ = cos(λ) + sin(λ)(r + si) + sin(λ)(p+ qi)j
= [(cos(λ) + sin(λ)r) + sin(λ)si] + [sin(λ)p+ sin(λ)qi] j .

By the identity just proved, we can choose angles a, b, c so that

evλ = eiaejbeic .

Hence
cos(b)ei(a+c) = (cos(λ) + sin(λ)r) + sin(λ)si

and
sin(b)ei(a−c) = sin(λ)p+ sin(λ)qi .

Suppose we keep v fixed and vary λ, then the last equations show that this
will result in a full variation of b.

Now consider

eia′
evλeic′ = eia′

eiaejbeiceib′ = ei(a′+a)ejbei(c+c′) .

By the basic identity, this shows that any element of SU(2) can be written
in the form

eia′
evλeic′ .

Then, by applying a rotation, we finally conclude that if u and v are linearly
independent unit vectors in R3, then any element of SU(2) can be written in
the form

eauebvecu

for appropriate choices of the real numbers a, b, c. ��

This Lemma can be used to verify density of a representation, by find-
ing two elements A and B in the representation such that the powers of A
are dense in the rotations about its axis, and the powers of B are dense in
the rotations about its axis, and such that the axes of A and B are linearly
independent in R3. Then by the Lemma, the set of elements Aa+cBbAa−c

are dense in SU(2). It follows, for example, that the Fibonacci representa-
tion described above is dense in SU(2), and indeed the generic representa-
tion of B3 into SU(2) will be dense in SU(2). Our next task is to describe
representations of the higher braid groups that will extend some of these uni-
tary representations of the three-strand braid group. For this, we need more
topology.
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3.8 The Bracket Polynomial and the Jones Polynomial

We now discuss the Jones polynomial. We shall construct the Jones polyno-
mial by using the bracket state summation model [2]. The bracket polyno-
mial, invariant under Reidmeister moves II and III, can be normalized to give
an invariant of all three Reidemeister moves (see Fig. 3.3). This normalized
invariant, with a change of variable, is the Jones polynomial [23, 24]. The
Jones polynomial was originally discovered by a different method than the
one given here.

The bracket polynomial, < K >=< K > (A), assigns to each unoriented
link diagram K a Laurent polynomial in the variable A, such that

1. If K and K ′ are regularly isotopic diagrams, then < K >=< K ′ >.
2. If K � O denotes the disjoint union of K with an extra unknotted and

unlinked component O (also called “loop” or “simple closed curve” or
“Jordan curve”), then

< K �O >= δ < K > ,

where
δ = −A2 −A−2 .

3. < K > satisfies the following formulas

< χ > = A < � > +A−1 <)(> ,

< χ > = A−1 < � > +A <)(> ,

where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the
straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment. See Fig. 3.9 for a graphic
illustration of this relation, and an indication of the convention for choosing
the labels A and A−1 at a given crossing.

It is easy to see that Properties 2 and 3 define the calculation of the
bracket on arbitrary link diagrams. The choices of coefficients (A and A−1)
and the value of δ make the bracket invariant under the Reidemeister moves
II and III. Thus Property 1 is a consequence of the other two properties.

In computing the bracket, one finds the following behavior under Reide-
meister move I:

< γ > = −A3 <�>

and

< γ > = −A−3 <�>,
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AA
A–1

A–1

A A–1

< > = A < > + < >A–1

< > = A< > + < >A–1

Fig. 3.9. Bracket smoothings

where γ denotes a curl of positive type as indicated in Fig. 3.10, and γ
indicates a curl of negative type, as also seen in this figure. The type of a
curl is the sign of the crossing when we orient it locally. Our convention of
signs is also given in Fig. 3.10. Note that the type of a curl does not depend
on the orientation we choose. The small arcs on the right-hand side of these
formulas indicate the removal of the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and can be normalized to
an invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K) < K > (A) ,

where we chose an orientation for K, and where w(K) is the sum of the
crossing signs of the oriented link K. w(K) is called the writhe of K. The
convention for crossing signs is shown in Fig. 3.10.

One useful consequence of these formulas is the following switching for-
mula

A < χ > −A−1 < χ >= (A2 −A−2) < � > .

or

or

+ –

+ +

– –

+

–

Fig. 3.10. Crossing signs and curls
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Note that in these conventions, the A-smoothing of χ is �, while the A-
smoothing of χ is )(. Properly interpreted, the switching formula above says
that you can switch a crossing and smooth it either way and obtain a three-
diagram relation. This is useful since some computations will simplify quite
quickly with the proper choices of switching and smoothing. Remember that
it is necessary to keep track of the diagrams up to regular isotopy (the equiv-
alence relation generated by the second and third Reidemeister moves). Here
is an example: Figure 3.11 shows a trefoil diagram K, an unknot diagram U ,
and another unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 −A2) < U ′ > ,

< U >= −A3, and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 −A2)A−6 .

Hence

A−1 < K > = −A4 +A−8 −A−4 .

Thus

< K > = −A5 −A−3 +A−7 .

This is the bracket polynomial of the trefoil diagram K.
Since the trefoil diagram K has writhe w(K) = 3, we have the normalized

polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5−A−3 +A−7) = A−4 +A−12−A−16 .

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and
determine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that
the trefoil is not ambient isotopic to its mirror image, a fact that is much
harder to prove by classical methods.

K U U'

Fig. 3.11. Trefoil and two relatives
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3.8.1 The State Summation

In order to obtain a closed formula for the bracket, we now describe it as a
state summation. Let K be any unoriented link diagram. Define a state, S, of
K to be a choice of smoothing for each crossing of K. There are two choices
for smoothing a given crossing, and thus there are 2N states of a diagram with
N crossings. In a state, we label each smoothing with A or A−1 according
to the left–right convention discussed in Property 3 (see Fig. 3.9). The label
is called a vertex weight of the state. There are two evaluations related to a
state. The first one is the product of the vertex weights, denoted

< K|S > .

The second evaluation is the number of loops in the state S, denoted

||S|| .

Define the state summation, < K >, by the formula

< K >=
∑

S

< K|S > δ||S||−1 .

It follows from this definition that < K > satisfies the equations

< χ > = A < � > +A−1 <)(> ,

< K �O > = δ < K > ,

< O > = 1 .

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with an
A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the
state summation. Hence this state summation produces the bracket polyno-
mial as we have described it at the beginning of the section.

Remark 6. By a change of variables, one obtains the original Jones polyno-
mial, VK(t), for oriented knots and links from the normalized bracket:

VK(t) = fK(t−
1
4 ) .

Remark 7. The bracket polynomial provides a connection between knot the-
ory and physics, in that the state summation expression for it exhibits it
as a generalized partition function defined on the knot diagram. Partition
functions are ubiquitous in statistical mechanics, where they express the
summation over all states of the physical system of probability weighting
functions for the individual states. Such physical partition functions contain
large amounts of information about the corresponding physical system. Some
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of this information is directly present in the properties of the function, such
as the location of critical points and phase transition. Some of the informa-
tion can be obtained by differentiating the partition function, or performing
other mathematical operations on it.

There is much more in this connection with statistical mechanics in that
the local weights in a partition function are often expressed in terms of so-
lutions to a matrix equation, the Yang–Baxter equation, that turns out to
fit perfectly invariance under the third Reidemeister move. As a result, there
are many ways to define partition functions of knot diagrams that give rise
to invariants of knots and links. The subject is intertwined with the algebraic
structure of Hopf algebras and quantum groups, useful for producing system-
atic solutions to the Yang–Baxter equation. In fact Hopf algebras are deeply
connected with the problem of constructing invariants of three-dimensional
manifolds in relation to invariants of knots. We have chosen, in this lecture,
to not discuss the details of these approaches, but rather to proceed to Vas-
siliev invariants and the relationships with Witten’s functional integral. The
reader is referred to [2, 3, 23–34] for more information about relationships of
knot theory with statistical mechanics, Hopf algebras, and quantum groups.
For topology, the key point is that Lie algebras can be used to construct
invariants of knots and links.

3.8.2 Quantum Computation of the Jones Polynomial

Can the invariants of knots and links such as the Jones polynomial be con-
figured as quantum computers? This is an important question because the
algorithms to compute the Jones polynomial are known to be NP -hard, and
so corresponding quantum algorithms may shed light on the relationship of
this level of computational complexity with quantum computing. Such mod-
els can be formulated in terms of the Yang–Baxter equation [2, 3, 25, 35].
The next paragraph explains how this comes about.

In Fig. 3.12, we indicate how topological braiding plus maxima (caps)
and minima (cups) can be used to configure the diagram of a knot or link.
This also can be translated into algebra by the association of a Yang–Baxter
matrix R (not necessarily the R of the previous sections) to each crossing and
other matrices to the maxima and minima. There are models of very effective
invariants of knots and links such as the Jones polynomial that can be put into
this form [35]. In this way of looking at things, the knot diagram can be viewed
as a picture, with time as the vertical dimension, of particles arising from the
vacuum, interacting (in a two-dimensional space) and finally annihilating one
another. The invariant takes the form of an amplitude for this process that
is computed through the association of the Yang–Baxter solution R as the
scattering matrix at the crossings and the minima and maxima as creation
and annihilation operators. Thus we can write the amplitude in the form

ZK = 〈CUP |M |CAP 〉,
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ZK = CAP |M |CUP

M

Unitary Braiding

Quantum Computation

CAP |(Measurement)

|CUP (Preparation)

Fig. 3.12. A knot quantum computer

where 〈CUP | denotes the composition of cups, M is the composition of ele-
mentary braiding matrices, and |CAP 〉 is the composition of caps. We regard
〈CUP | as the preparation of this state, and |CAP 〉 as the measurement of this
state. In order to view ZK as a quantum computation, M must be a unitary
operator. This is the case when the R-matrices (the solutions to the Yang–
Baxter equation used in the model) are unitary. Each R-matrix is viewed
as a quantum gate (or possibly a composition of quantum gates), and the
vacuum–vacuum diagram for the knot is interpreted as a quantum computer.
This quantum computer will probabilistically (via quantum amplitudes) com-
pute the values of the states in the state sum for ZK .

We should remark, however, that it is not necessary that the invariant
be modeled via solutions to the Yang–Baxter equation. One can use unitary
representations of the braid group that are constructed in other ways. In fact,
the presently successful quantum algorithms for computing knot invariants
indeed use such representations of the braid group, and we shall see this be-
low. Nevertheless, it is useful to point out this analogy between the structure
of the knot invariants and quantum computation.

Quantum algorithms for computing the Jones polynomial have been dis-
cussed elsewhere. See [19, 35–39]. Here, as an example, we give a local uni-
tary representation that can be used to compute the Jones polynomial for
closures of 3-braids. We analyze this representation by making explicit how
the bracket polynomial is computed from it and showing how the quantum
computation devolves to finding the trace of a unitary transformation.

The idea behind the construction of this representation depends upon
the algebra generated by two single-qubit density matrices (ket-bras). Let |v〉
and |w〉 be two qubits in V , a complex vector space of dimension two over
the complex numbers. Let P = |v〉〈v| and Q = |w〉〈w| be the corresponding
ket-bras. Note that
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P 2 = |v|2P ,

Q2 = |w|2Q ,

PQP = |〈v|w〉|2P ,

QPQ = |〈v|w〉|2Q .

P and Q generate a representation of the Temperley–Lieb algebra (see
Sect. 3.6 of the present paper). One can adjust parameters to make a repre-
sentation of the three-strand braid group in the form

s1 −→ rP + sI ,

s2 −→ tQ+ uI ,

where I is the identity mapping on V , and r, s, t, u are suitably chosen
scalars. In the following, we use this method to adjust such a representation
so that it is unitary. Note also that this is a local unitary representation of
B3 to U(2). We leave it as an exercise for the reader to verify that it fits into
our general classification of such representations as given in Sect. 3.4.

The representation depends on two symmetric but non-unitary matrices
U1 and U2 with

U1 =
(
d 0
0 0

)
= d|w〉〈w|

and

U2 =
(

d−1
√

1− d−2
√

1− d−2 d− d−1

)
= d|v〉〈v| ,

where w = (1, 0) and v = (d−1,
√

1− d−2), assuming the entries of v are real.
Note that U2

1 = dU1 and U2
2 = dU1. Moreover, U1U2U1 = U1 and U2U1U2 =

U1. This is an example of a specific representation of the Temperley–Lieb
algebra [2, 35]. The desired representation of the Artin braid group is given
on the two braid generators for the three-strand braid group by the equations:

Φ(s1) = AI +A−1U1 ,

Φ(s2) = AI +A−1U2 .

Here I denotes the 2 × 2 identity matrix. For any A with d = −A2 − A−2

these formulas define a representation of the braid group. With A = eiθ, we
have d = −2cos(2θ). We find a specific range of angles θ in the following
disjoint union of angular intervals

θ ∈ [0, π/6] � [π/3, 2π/3] � [5π/6, 7π/6] � [4π/3, 5π/3] � [11π/6, 2π]

that give unitary representations of the three-strand braid group. Thus a spe-
cialization of a more general represention of the braid group gives rise to a
continuous family of unitary representations of the braid group.
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Note that the traces of these matrices are given by the formulas tr(U1) =
tr(U2) = d while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I(b) denote
the sum of the exponents in the braid word that expresses b. For b a three-
strand braid, it follows that

Φ(b) = AI(b)I +Π(b) ,

where I is the 2 × 2-identity matrix, and Π(b) is a sum of products in the
Temperley–Lieb algebra involving U1 and U2. Since the Temperley–Lieb al-
gebra in this dimension is generated by I, U1, U2, U1U2, and U2U1, it follows
that the value of the bracket polynomial of the closure of the braid b, denoted
< b >, can be calculated directly from the trace of this representation, except
for the part involving the identity matrix. The result is the equation

< b >= AI(b)d2 + tr(Π(b)) ,

where b denotes the standard braid closure of b, and the sharp brackets denote
the bracket polynomial. From this, we see at once that

< b >= tr(Φ(b)) +AI(b)(d2 − 2) .

It follows from this calculation that the question of computing the bracket
polynomial for the closure of the three-strand braid b is mathematically equiv-
alent to the problem of computing the trace of the unitary matrix Φ(b).

3.8.3 The Hadamard Test

In order to (quantum) compute the trace of a unitary matrix U , one can
use the Hadamard test to obtain the diagonal matrix elements 〈ψ|U |ψ〉 of
U . The trace is then the sum of these matrix elements as |ψ〉 runs over an
orthonormal basis for the vector space. We first obtain

1
2

+
1
2
Re〈ψ|U |ψ〉

as an expectation by applying the Hadamard gate H

H|0〉 =
1√
2
(|0〉+ |1〉)

H|1〉 =
1√
2
(|0〉 − |1〉)

to the first qubit of

CU ◦ (H ⊗ 1)|0〉|ψ〉 =
1√
2
(|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉) .

Here CU denotes controlled U , acting as U when the control bit is |1〉 and
the identity mapping when the control bit is |0〉. We measure the expectation
for the first qubit |0〉 of the resulting state
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1√
2
(H|0〉 ⊗ |ψ〉+H|1〉 ⊗ U |ψ〉)

=
1
2
((|0〉+ |1〉)⊗ |ψ〉+ (|0〉 − |1〉)⊗ U |ψ〉)

=
1
2
(|0〉 ⊗ (|ψ〉+ U |ψ〉) + |1〉 ⊗ (|ψ〉 − U |ψ〉)) .

This expectation is

1
2
(〈ψ|+ 〈ψ|U†)(|ψ〉+ U |ψ〉) =

1
2

+
1
2
Re〈ψ|U |ψ〉 .

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉 ⊗ |ψ〉 − i|1〉 ⊗ U |ψ〉) .

This is the method used in [36], and the reader may wish to contemplate
its efficiency in the context of this simple model. Note that the Hadamard
test enables this quantum computation to estimate the trace of any unitary
matrix U by repeated trials that estimate individual matrix entries 〈ψ|U |ψ〉.

3.9 Quantum Topology, Cobordism Categories,
Temperley–Lieb Algebra and Topological Quantum
Field Theory

The purpose of this section is to discuss the general idea behind topological
quantum field theory and to illustrate its application to basic quantum me-
chanics and quantum mechanical formalism. It is useful in this regard to have
available the concept of category, and we shall begin the section by discussing
this far-reaching mathematical concept.

Definition 1. A category Cat consists in two related collections:

1. Obj(Cat), the objects of Cat, and
2. Morph(Cat), the morphisms of Cat.

satisfying the following axioms:

1. Each morphism f is associated to two objects of Cat, the domain of f and
the codomain of f. Letting A denote the domain of f and B denote the
codomain of f , it is customary to denote the morphism f by the arrow
notation f : A −→ B.

2. Given f : A −→ B and g : B −→ C, where A, B, and C are objects of
Cat, then there exists an associated morphism g ◦ f : A −→ C called the
composition of f and g.
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3. To each object A of Cat, there is a unique identity morphism 1A : A −→
A such that 1A ◦ f = f for any morphism f with codomain A, and
g ◦ 1A = g for any morphism g with domain A.

4. Given three morphisms f : A −→ B, g : B −→ C, and h : C −→ D, then
composition is associative. That is

(h ◦ g) ◦ f = h ◦ (g ◦ f) .

If Cat1 and Cat2 are two categories, then a functor F : Cat1 −→
Cat2 consists in functions FO : Obj(Cat1) −→ Obj(Cat2) and FM :
Morph(Cat1) −→ Morph(Cat2) such that identity morphisms and com-
position of morphisms are preserved under these mappings. That is (writing
just F for FO and FM ),

1. F (1A) = 1F (A),
2. F (f : A −→ B) = F (f) : F (A) −→ F (B),
3. F (g ◦ f) = F (g) ◦ F (f).

A functor F : Cat1 −→ Cat2 is a structure-preserving mapping from one
category to another. It is often convenient to think of the image of the functor
F as an interpretation of the first category in terms of the second. We shall
use this terminology below and sometimes refer to an interpretation without
specifying all the details of the functor that describes it.

The notion of category is a broad mathematical concept, encompassing
many fields of mathematics. Thus one has the category of sets where the
objects are sets (collections) and the morphisms are mappings between sets.
One has the category of topological spaces where the objects are spaces and
the morphisms are continuous mappings of topological spaces. One has the
category of groups where the objects are groups and the morphisms are ho-
momorphisms of groups. Functors are structure-preserving mappings from
one category to another. For example, the fundamental group is a functor
from the category of topological spaces with base point, to the category of
groups. In all the examples mentioned so far, the morphisms in the category
are restrictions of mappings in the category of sets, but this is not necessarily
the case. For example, any group G can be regarded as a category, Cat(G),
with one object ∗. The morphisms from ∗ to itself are the elements of the
group and composition is group multiplication. In this example, the object
has no internal structure, and all the complexity of the category is in the
morphisms.

The Artin braid group Bn can be regarded as a category whose single ob-
ject is an ordered row of points [n] = {1, 2, 3, . . . , n}. The morphisms are the
braids themselves, and the composition is the multiplication of the braids.
The ordered row of points is interpreted as the starting and ending row of
points at the bottom and the top of the braid. In the case of the braid
category, the morphisms have both external and internal structure. Each
morphism produces a permutation of the ordered row of points (correspond-
ing to the beginning and ending points of the individual braid strands), and
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weaving of the braid is extra structure beyond the object that is its domain
and codomain. Finally, for this example, we can take all the braid groups
Bn (n a positive integer) under the wing of a single category, Cat(B), whose
objects are all ordered rows of points [n], and whose morphisms are of the
form b : [n] −→ [n] where b is a braid in Bn. The reader may wish to have
morphisms between objects with different n. We will have this shortly in the
Temperley–Lieb category and in the category of tangles.

The n-Cobordism Category, Cob[n], has as its objects smooth manifolds
of dimension n, and as its morphisms, smooth manifolds Mn+1 of dimension
n + 1 with a partition of the boundary, ∂Mn+1, into two collections of n-
manifolds that we denote by L(Mn+1) and R(Mn+1). We regard Mn+1 as a
morphism from L(Mn+1) to R(Mn+1)

Mn+1 : L(Mn+1) −→ R(Mn+1) .

As we shall see, these cobordism categories are highly significant for quan-
tum mechanics, and the simplest one, Cob[0] is directly related to the Dirac
notation of bras and kets and to the Temperley–Lieb algebra. We shall con-
centrate in this section on these cobordism categories, and their relationships
with quantum mechanics.

One can choose to consider either oriented or non-oriented manifolds,
and within unoriented manifolds, there are those that are orientable and
those that are not orientable. In this section, we will implicitly discuss only
orientable manifolds, but we shall not specify an orientation. In the next
section, with the standard definition of topological quantum field theory, the
manifolds will be oriented. The definitions of the cobordism categories for
oriented manifolds go over mutatis mutandis.

Lets begin with Cob[0]. Zero-dimensional manifolds are just collections of
points. The simplest zero-dimensional manifold is a single point p. We take
p to be an object of this category and also ∗, where ∗ denotes the empty
manifold (i.e., the empty set in the category of manifolds). The object ∗
occurs in Cob[n] for every n, since it is possible that either the left set or the
right set of a morphism is empty. A line segment S with boundary points p
and q is a morphism from p to q.

S : p −→ q .

In Fig. 3.13, we have illustrated the morphism from p to p. The simplest
convention for this category is to take this morphism to be the identity. Thus
if we look at the subcategory of Cob[0] whose only object is p, then the only
morphism is the identity morphism. Two points occur as the boundary of an
interval. The reader will note that Cob[0] and the usual arrow notation for
morphisms are very closely related. This is a place where notation and math-
ematical structure share common elements. In general, the objects of Cob[0]
consist in the empty object ∗ and non-empty rows of points, symbolized by

p⊗ p⊗ · · · ⊗ p⊗ p .
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Identity 

p
f: p                 p

p

pp *
pp*

Fig. 3.13. Elementary cobordisms

Figure 3.13 also contains a morphism

p⊗ p −→ ∗

and the morphism
∗ −→ p⊗ p .

The first represents a cobordism of two points to the empty set (via the
bounding curved interval). The second represents a cobordism from the empty
set to two points.

In Fig. 3.14, we have indicated more morphisms in Cob[0], and we have
named the morphisms just discussed as

|Ω〉 : p⊗ p −→ ∗ ,
〈Θ| : ∗ −→ p⊗ p .

The point to notice is that the usual conventions for handling Dirac bra–kets
are essentially the same as the composition rules in this topological category.
Thus, in Fig. 3.14, we have that

〈Θ| ◦ |Ω〉 = 〈Θ|Ω〉 : ∗ −→ ∗,

Identity 

| Ω >

< Θ |

< Θ | Ω >

| Ω >  < Θ |

= U

 =

 =

U U  = | Ω >  < Θ | Ω >  < Θ |

 = < Θ | Ω > | Ω >  < Θ |

 = < Θ | Ω > U

Fig. 3.14. Bras, kets, and projectors
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which represents a cobordism from the empty manifold to itself. This cobor-
dism is topologically a circle, and in the Dirac formalism is interpreted as a
scalar. In order to interpret the notion of scalar, we would have to map the
cobordism category to the category of vector spaces and linear mappings. We
shall discuss this after describing the similarities with quantum mechanical
formalism. Nevertheless, the reader should note that if V is a vector space
over the complex numbers C, then a linear mapping from C to C is deter-
mined by the image of 1, and hence is characterized by the scalar that is the
image of 1. In this sense, a mapping C −→ C can be regarded as a possi-
ble image in vector spaces of the abstract structure 〈Θ|Ω〉 : ∗ −→ ∗. It is
therefore assumed that in Cob[0], the composition with the morphism 〈Θ|Ω〉
commutes with any other morphism. In that way, 〈Θ|Ω〉 behaves like a scalar
in the cobordism category. In general, an n + 1 manifold without boundary
behaves as a scalar in Cob[n], and if a manifold Mn+1 can be written as a
union of two submanifolds Ln+1 and Rn+1 so that that an n-manifold Wn is
their common boundary:

Mn+1 = Ln+1 ∪Rn+1

with
Ln+1 ∩Rn+1 = Wn

then, we can write

〈Mn+1〉 = 〈Ln+1 ∪Rn+1〉 = 〈Ln+1|Rn+1〉 ,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other mor-
phisms) in the category Cob[n].

Getting back to the contents of Fig. 3.14, note how the zero-dimensional
cobordism category has structural parallels to the Dirac ket–bra formalism

U = |Ω〉〈Θ|
UU = |Ω〉〈Θ|Ω〉〈Θ| = 〈Θ|Ω〉|Ω〉〈Θ| = 〈Θ|Ω〉U .

In the cobordism category, the bra–ket and ket–bra formalism is seen as
patterns of connection of the one manifold that realize the cobordisms.

Now, Fig. 3.15 illustrates a morphism S in Cob[0] that requires two crossed
line segments for its planar representation. Thus S can be regarded as a non-
trivial permutation, and S2 = I, where I denotes the identity morphisms
for a two-point row. From this example, it is clear that Cob[0] contains the
structure of all the symmetric groups and more. In fact, if we take the subcat-
egory of Cob[0] consisting of all morphisms from [n] to [n] for a fixed positive
integer n, then this gives the well-known Brauer algebra (see [40]) extending
the symmetric group by allowing any connections among the points in the
two rows. In this sense, one could call Cob[0] the Brauer category. We shall
return to this point of view later.
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S

I

S2 = I

SU = US = U

Fig. 3.15. Permutations

In this section, we shall be concentrating on the part of Cob[0] that does
not involve permutations. This part can be characterized by those morphisms
that can be represented by planar diagrams without crossings between any
of the line segments (the one manifolds). We shall call this crossingless sub-
category of Cob[0] the Temperley–Lieb Category and denote it by CatTL. In
CatTL, we have the subcategory TL[n] whose only objects are the row of n
points and the empty object ∗, and whose morphisms can all be represented
by configurations that embed in the plane as in the morphisms P and Q in
Fig. 3.16. Note that with the empty object ∗, the morphism whose diagram
is a single loop appears in TL[n] and is taken to commute with all other
morphisms.

The Temperley–Lieb Algebra, AlgTL[n], is generated by the morphisms
in TL[n] that go from [n] to itself. Up to multiplication by the loop, the
product (composition) of two such morphisms is another flat morphism from
[n] to itself. For algebraic purposes, the loop ∗ −→ ∗ is taken to be a scalar
algebraic variable δ that commutes with all elements in the algebra. Thus the
equation

UU = 〈Θ|Ω〉U
becomes

UU = δU

1

1{

{| Ω > < Θ |}      1 = P

{| Ω > < Θ |} 1 = Q

< Θ |} {| Ω > 1}

Fig. 3.16. Projectors in tensor lines and elementary topology
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in the algebra. In the algebra, we are allowed to add morphisms formally, and
this addition is taken to be commutative. Initially the algebra is taken with
coefficients in the integers, but a different commutative ring of coefficients can
be chosen and the value of the loop may be taken in this ring. For example,
for quantum mechanical applications, it is natural to work over the complex
numbers. The multiplicative structure of AlgTL[n] can be described by gen-
erators and relations as follows: Let In denote the identity morphism from
[n] to [n]. Let Ui denote the morphism from [n] to [n] that connects k with k
for k < i and k > i+ 1 from one row to the other and connects i to i+ 1 in
each row. Then the algebra AlgTL[n] is generated by {In, U1, U2, · · · , Un−1}
with relations

U2
i = δUi ,

UiUi+1Ui = Ui ,

UiUj = UjUi : |i− j| > 1 .

These relations are illustrated for three strands in Fig. 3.16. We leave the
commuting relation for the reader to draw in the case where n is four or
greater. For a proof that these are indeed all the relations, see [41].

Figures 3.16 and 3.17 indicate how the zero-dimensional cobordism cate-
gory contains structure that goes well beyond the usual Dirac formalism. By
tensoring the ket–bra on one side or another by identity morphisms, we ob-
tain the beginnings of the Temperley–Lieb algebra and the Temperley–Lieb
category. Thus Fig. 3.17 illustrates the morphisms P and Q obtained by such
tensoring, and the relation PQP = P which is the same as U1U2U1 = U1.

Note the composition at the bottom of the Fig. 3.17. Here we see a com-
position of the identity tensored with a ket, followed by a bra tensored with
the identity. The diagrammatic for this association involves “straightening”
the curved structure of the morphism to a straight line. In Fig. 3.18, we have
elaborated this situation even further, pointing out that in this category each

<    ||    > 1 = P

<    ||    >1

|     ><     |1 1{ } { } = R

Θ

Θ

Ω

Ω

Θ Ω

{ } = Q

}{

 =

 =

PQP = P

R = 1

Fig. 3.17. The basic Temperley–Lieb relation
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φ|    >

ψ|    >

Θ

Ω

ΩΘ
φ|    > ψ|    >

ΩΘφ|    > ψ|    > =

|     >

<     |

Θ|     >

Ω<     | Ω

Θ

Fig. 3.18. The key to teleportation

of the morphisms 〈Θ| and |Ω〉 can be seen, by straightening, as mappings
from the generating object to itself. We have denoted these corresponding
morphisms by Θ and Ω, respectively. In this way, there is a correspondence
between morphisms p⊗ p −→ ∗ and morphism p −→ p.

In Fig. 3.18, we have illustrated the generalization of the straightening
procedure of Fig. 3.17. In Fig. 3.17, the straightening occurs because the
connection structure in the morphism of Cob[0] does not depend on the wan-
dering of curves in diagrams for the morphisms in that category. Nevertheless,
one can envisage a more complex interpretation of the morphisms where each
one manifold (line segment) has a label, and a multiplicity of morphisms can
correspond to a single-line segment. This is exactly what we expect in inter-
pretations. For example, we can interpret the line segment [1] −→ [1] as a
mapping from a vector space V to itself. Then [1] −→ [1] is the diagrammatic
abstraction for V −→ V , and there are many instances of linear mappings
from V to V .

At the vector space level, there is a duality between mappings V ⊗V −→ C
and linear maps V −→ V . Specifically, let

{|0〉, · · · , |m〉}

be a basis for V . Then Θ : V −→ V is determined by

Θ|i〉 = Θij |j〉

(where we have used the Einstein summation convention on the repeated
index j), which corresponds to the bra
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〈Θ| : V ⊗ V −→ C

defined by
〈Θ|ij〉 = Θij .

Given 〈Θ| : V ⊗ V −→ C, we associate Θ : V −→ V in this way.
Comparing with the diagrammatic for the category Cob[0], we say that

Θ : V −→ V is obtained by straightening the mapping

〈Θ| : V ⊗ V −→ C.

Note that in this interpretation, the bras and kets are defined relative to the
tensor product of V with itself and [2] is interpreted as V ⊗V . If we interpret
[2] as a single vector space W , then the usual formalisms of bras and kets
still pass over from the cobordism category.

Figure 3.18 illustrates the straightening of |Θ〉 and 〈Ω|, and the straight-
ening of a composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand
part of the bottom of Fig. 3.18, we illustrate the preparation of the tensor
product |Θ〉⊗ |ψ〉 followed by a successful measurement by 〈Ω| in the second
two tensor factors. The resulting single qubit state, as seen by straightening,
is |φ〉 = Θ ◦Ω|ψ〉.

From this, we see that it is possible to reversibly, indeed unitarily, trans-
form a state |ψ〉 via a combination of preparation and measurement just so
long as the straightenings of the preparation and measurement (Θ and Ω)
are each invertible (unitary). This is the key to teleportation [42–44]. In the
standard teleportation procedure, one chooses the preparation Θ to be (up to
normalization) the two-dimensional identity matrix so that |θ〉 = |00〉+ |11〉.
If the successful measurement Ω is also the identity, then the transmitted
state |φ〉 will be equal to |ψ〉. In general, we will have |φ〉 = Ω|ψ〉. One can
then choose a basis of measurements |Ω〉, each corresponding to a unitary
transformation Ω so that the recipient of the transmission can rotate the re-
sult by the inverse of Ω to reconstitute |ψ〉 if given the requisite information.
This is the basic design of the teleportation procedure.

There is much more to say about the category Cob[0] and its relationship
with quantum mechanics. We will stop here, and invite the reader to explore
further. Later in the text, we shall use these ideas in formulating our repre-
sentations of the braid group. For now, we point out how things look as we
move upward to Cob[n] for n > 0. In Fig. 3.19, we show typical cobordisms
(morphisms) in Cob[1] from two circles to one circle and from one circle to
two circles. These are often called “pairs of pants”. Their composition is a
surface of genus one seen as a morphism from two circles to two circles. The
bottom of the figure indicates a ket–bra in this dimension in the form of a
mapping from one circle to one circle as a composition of a cobordism of a
circle to the empty set and a cobordism from the empty set to a circle (circles
bounding disks). As we go to higher dimensions, the structure of cobordisms
becomes more interesting and more complicated. It is remarkable that there
is so much structure in the lowest dimensions of these categories.
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Fig. 3.19. Corbordisms of 1-manifolds are surfaces

3.10 Braiding and Topological Quantum Field Theory

The purpose of this section is to discuss in a very general way how braiding
is related to topological quantum field theory. In the section to follow, we
will use the Temperley–Lieb recoupling theory to produce specific unitary
representations of the Artin braid group.

The ideas in the subject of topological quantum field theory (TQFT) are
well expressed in the book [45] by Michael Atiyah and the paper [46] by
Edward Witten. Here is Atiyah’s definition:

Definition 2. A TQFT in dimension d is a functor Z(Σ) from the cobordism
category Cob[d] to the category Vect of vector spaces and linear mappings
which assigns

1. a finite-dimensional vector space Z(Σ) to each compact, oriented d-
dimensional manifold Σ,

2. a vector Z(Y ) ∈ Z(Σ) for each compact, oriented (d + 1)-dimensional
manifold Y with boundary Σ.

3. a linear mapping Z(Y ) : Z(Σ1) −→ Z(Σ2) when Y is a (d+ 1)-manifold
that is a cobordism between Σ1 and Σ2 (whence the boundary of Y is the
union of Σ1 and −Σ2).

The functor satisfies the following axioms.

1. Z(Σ†) = Z(Σ)† where Σ† denotes the manifold Σ with the opposite ori-
entation, and Z(Σ)† is the dual vector space.

2. Z(Σ1 ∪Σ2) = Z(Σ1)⊗ Z(Σ2), where ∪ denotes disjoint union.
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3. If Y1 is a cobordism from Σ1 to Σ2, Y2 is a cobordism from Σ2 to Σ3 and
Y is the composite cobordism Y = Y1 ∪Σ2 Y2, then

Z(Y ) = Z(Y2) ◦ Z(Y1) : Z(Σ1) −→ Z(Σ2)

is the composite of the corresponding linear mappings.
4. Z(φ) = C (C denotes the complex numbers) for the empty manifold φ.
5. With Σ × I (where I denotes the unit interval) denoting the identity

cobordism from Σ to Σ, Z(Σ × I) is the identity mapping on Z(Σ).

Note that in this view a TQFT is basically a functor from the cobordism
categories defined in the last section to vector spaces over the complex num-
bers. We have already seen that in the lowest dimensional case of cobordisms
of zero-dimensional manifolds, this gives rise to a rich structure related to
quantum mechanics and quantum information theory. The remarkable fact
is that the case of three dimensions is also related to quantum theory and to
the lower dimensional versions of the TQFT. This gives a significant way to
think about three manifold invariants in terms of lower dimensional patterns
of interaction. Here follows a brief description.

Regard the three manifold as a union of two handlebodies with boundary
an orientable surface Sg of genus g. The surface is divided up into trinions
as illustrated in Fig. 3.20. A trinion is a surface with boundary that is topo-
logically equivalent to a sphere with three punctures. The trinion constitutes
in itself a cobordism in Cob[1] from two circles to a single circle, or from a
single circle to two circles, or from three circles to the empty set. The pattern
of a trinion is a trivalent graphical vertex, as illustrated in Fig. 3.21. In that

Trinion

Fig. 3.20. Decomposition of a surface into trinions
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V(                                   )ε

Fig. 3.21. Trivalent vectors

figure, we show the trivalent vertex graphical pattern drawn on the surface
of the trinion, forming a graphical pattern for this combordism. It should be
clear from this figure that any cobordism in Cob[1] can be diagrammed by a
trivalent graph, so that the category of trivalent graphs (as morphisms from
ordered sets of points to ordered sets of points) has an image in the cate-
gory of cobordisms of compact one-dimensional manifolds. Given a surface S
(possibly with boundary) and a decomposition of that surface into trinions,
we associate to it a trivalent graph G(S, t), where t denotes the particular
trinion decomposition.

In this correspondence, distinct graphs can correspond to topologically
identical cobordisms of circles, as illustrated in Fig. 3.22. It turns out that
the graphical structure is important and that it is extraordinarily useful to
articulate transformations between the graphs that correspond to the home-
omorphisms of the corresponding surfaces. The beginning of this structure is
indicated in the bottom part of Fig. 3.22.

=

Fig. 3.22. Trinion associativity
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C

A B
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=

Fig. 3.23. Tube twist

In Fig. 3.23, we illustrate another feature of the relationship between
surfaces and graphs. At the top of the figure, we indicate a homeomorphism
between a twisted trinion and a standard trinion. The homeomorphism leaves
the ends of the trinion (denoted A, B, and C) fixed while undoing the internal
twist. This can be accomplished as an ambient isotopy of the embeddings in
three-dimensional space that are indicated by this figure. Below this isotopy,
we indicate the corresponding graphs. In the graph category, there will have
to be a transformation between a braided and an unbraided trivalent vertex
that corresponds to this homeomorphism.

From the point of view that we shall take in this paper, the key to
the mathematical structure of three-dimensional TQFT lies in the trivalent
graphs, including the braiding of graphical arcs. We can think of these braided
graphs as representing idealized Feynman diagrams, with the trivalent vertex
as the basic particle interaction vertex, and the braiding of lines representing
an interaction resulting from an exchange of particles. In this view, one thinks
of the particles as moving in a two-dimensional medium, and the diagrams
of braiding and trivalent vertex interactions as indications of the temporal
events in the system, with time indicated in the direction of the morphisms
in the category. Adding such graphs to the category of knots and links is
an extension of the tangle category where one has already extended braids to
allow any embedding of strands and circles that start in n-ordered points and
end in m-ordered points. The tangle category includes the braid category and
the Temperley–Lieb category. Both are included in the category of braided
trivalent graphs.

Thinking of the basic trivalent vertex as the form of a particle interaction,
there will be a set of particle states that can label each arc incident to the
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vertex. In Fig. 3.21, we illustrate the labeling of the trivalent graphs by such
particle states. In the next two sections, we will see specific rules for labeling
such states. Here it suffices to note that there will be some restrictions on
these labels, so that a trivalent vertex has a set of possible labelings. Similarly,
any trivalent graph will have a set of admissible labelings. These are the
possible particle processes that this graph can support. We take the set of
admissible labelings of a given graph G as a basis for a vector space V (G) over
the complex numbers. This vector space is the space of processes associated
with the graph G. Given a surface S and a decomposition t of the surface
into trinions, we have the associated graph G(S, t) and hence a vector space
of processes V (G(S, t)). It is desirable to have this vector space independent
of the particular decomposition into trinions. If this can be accomplished,
then the set of vector spaces and linear mappings associated to the surfaces
can constitute a functor from the category of cobordisms of one manifold to
vector spaces, and hence gives rise to a one-dimensional topological quantum
field theory. To this end, we need some properties of the particle interactions
that will be described below.

A spin network is, by definition, a labeled trivalent graph in a category
of graphs that satisfy the properties outlined in the previous paragraph. We
shall detail the requirements below.

The simplest case of this idea is C. N. Yang’s original interpretation of
the Yang–Baxter equation [47]. Yang articulated a quantum field theory in
one dimension of space and one dimension of time in which the R-matrix
giving the scattering amplitudes for an interaction of two particles whose (let
us say) spins corresponded to the matrix indices so that Rcd

ab is the amplitude
for particles of spin a and spin b to interact and produce particles of spin
c and d. Since these interactions are between particles in a line, one takes
the convention that the particle with spin a is to the left of the particle with
spin b, and the particle with spin c is to the left of the particle with spin d. If
one follows the concatenation of such interactions, then there is an underlying
permutation that is obtained by following strands from the bottom to the top
of the diagram (thinking of time as moving up the page). Yang designed the
Yang–Baxter equation for R so that the amplitudes for a composite process
depend only on the underlying permutation corresponding to the process and
not on the individual sequences of interactions.

In taking over the Yang–Baxter equation for topological purposes, we can
use the same interpretation, but think of the diagrams with their under- and
over-crossings as modeling events in a spacetime with two dimensions of space
and one dimension of time. The extra spatial dimension is taken in displac-
ing the woven strands perpendicular to the page and allows to use braiding
operators R and R−1 as scattering matrices. Taking this picture to heart,
one can add other particle properties to the idealized theory. In particular,
one can add fusion and creation vertices where in fusion two particles inter-
act to become a single particle and in creation one particle changes (decays)
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Fig. 3.24. Creation and fusion

into two particles. These are the trivalent vertices discussed above. Matrix
elements corresponding to trivalent vertices can represent these interactions
(see Fig. 3.24).

Once one introduces trivalent vertices for fusion and creation, there is the
question how these interactions will behave in respect to the braiding opera-
tors. There will be a matrix expression for the compositions of braiding and
fusion or creation as indicated in Fig. 3.25. Here we will restrict ourselves to
showing the diagrammatics with the intent of giving the reader a flavor of
these structures. It is natural to assume that braiding intertwines with cre-
ation as shown in Fig. 3.26 (similarly with fusion). This intertwining identity
is clearly the sort of thing that a topologist will love, since it indicates that the
diagrams can be interpreted as embeddings of graphs in three-dimensional
space, and it fits with our interpretation of the vertices in terms of trinions.
The intertwining identity is an assumption like the Yang–Baxter equation it-
self (see Fig. 3.7), which simplifies the mathematical structure of the model.

It is to be expected that there will be an operator that expresses the
recoupling of vertex interactions as shown in Fig. 3.27 and labeled by Q.
This corresponds to the associativity at the level of trinion combinations
shown in Fig. 3.22. The actual formalism of such an operator will parallel
the mathematics of recoupling for angular momentum (see e.g., [26]). If one

= R

Fig. 3.25. Braiding

=

Fig. 3.26. Interwining
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F

Fig. 3.27. Recoupling

just considers the abstract structure of recoupling, then one sees that for
trees with four branches (each with a single root), there is a cycle of length
five as shown in Fig. 3.28. One can start with any pattern of three-vertex
interactions and go through a sequence of five recouplings that bring one
back to the same tree from which one started. It is a natural simplifying
axiom to assume that this composition is the identity mapping. This axiom
is called the pentagon identity.

Finally there is a hexagonal cycle of interactions between braiding, re-
coupling, and intertwining identity as shown in Fig. 3.29. One says that the
interactions satisfy the hexagon identity if this composition is the identity.

A graphical three-dimensional topological quantum field theory is an alge-
bra of interactions that satisfies the Yang–Baxter equation, the intertwining
identity, the pentagon identity, and the hexagon identity. There is no room
in this summary to detail the way that these properties fit into the topology
of knots and three-dimensional manifolds, but a sketch is in order. For the
case of topological quantum field theory related to the group SU(2), there
is a construction based entirely on the combinatorial topology of the bracket
polynomial (see Sects. 3.7, 3.9, and 3.10). See [3, 26] for more information on
this approach.

Now return to Fig. 3.20 where we illustrate trinions, shown in relation
to a trivalent vertex, and a surface of genus three that is decomposed into
four trinions. It turns out that the vector space V (Sg) = V (G(Sg, t)) to a
surface with a trinion decomposition as t described above, and defined in

F
F

F

FF

Fig. 3.28. Pentagon identity
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=

R

R

R

F

F

F

Fig. 3.29. Hexagon identity

terms of the graphical topological quantum field theory, does not depend
on the choice of trinion decomposition. This independence is guaranteed by
the braiding, hexagon, and pentagon identities. One can then associate a
well-defined vector |M〉 in V (Sg) whenever M is a three manifold whose
boundary is Sg. Furthermore, if a closed three manifold M3 is decomposed
along a surface Sg into the union of M− and M+ where these parts are
otherwise disjoint three manifolds with boundary Sg, then the inner product
I(M) = 〈M−|M+〉 is, up to normalization, an invariant of the three manifold
M3. With the definition of graphical topological quantum field theory given
above, knots and links can be incorporated as well, so that one obtains a
source of invariants I(M3,K) of knots and links in orientable three manifolds.
Here we see the uses of the relationships that occur in the higher dimensional
cobordism categories, as described in the previous section.

The invariant I(M3,K) can be formally compared with the Witten [46]
integral

Z(M3,K) =
∫
DAe(ik/4π)S(M,A)WK(A) .

It can be shown that up to limits of the heuristics, Z(M,K) and I(M3,K) are
essentially equivalent for appropriate choice of gauge group and corresponding
spin networks.

By these graphical reformulations, a three-dimensional TQFT is, at base,
a highly simplified theory of point particle interactions in 2 + 1-dimensional
spacetime. It can be used to articulate invariants of knots and links and
invariants of three manifolds. The reader interested in the SU(2) case of this
structure and its implications for invariants of knots and three manifolds can
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F R

B = F–1RF

F–1

Fig. 3.30. A more complex braiding operator

consult [3, 26, 48–50]. One expects that physical situations involving 2 + 1
spacetime will be approximated by such an idealized theory. There are also
applications to 3 + 1 quantum gravity [12, 51, 52]. Aspects of the quantum
Hall effect may be related to topological quantum field theory [4]. One can
study a physics in two-dimensional space, where the braiding of particles or
collective excitations leads to non-trival representations of the Artin braid
group. Such particles are called Anyons. Such TQFT models would describe
applicable physics. One can think about applications of anyons to quantum
computing along the lines of the topological models described here.

A key point in the application of TQFT to quantum information theory is
contained in the structure illustrated in Fig. 3.30. A more complex braiding
operator is shown, based on the composition of recoupling with the elemen-
tary braiding at a vertex. (This structure is implicit in the Hexagon identity
of Fig. 3.29.) The new braiding operator is a source of unitary representations
of braid group in situations (which exist mathematically) where the recou-
pling transformations are themselves unitary. This kind of pattern is utilized
in the work of Freedman and collaborators [53–57] and in the case of classi-
cal angular momentum formalism has been dubbed a “spin-network quantum
simulator” by Rasetti and collaborators [58, 59]. In the next section, we show
how certain natural deformations [26] of Penrose spin networks [60] can be
used to produce these unitary representations of the Artin braid group and
the corresponding models for anyonic topological quantum computation.

3.11 Spin Networks and Temperley–Lieb
Recoupling Theory

In this section, we discuss a combinatorial construction for spin networks that
generalizes the original construction of Roger Penrose. The result of this gen-
eralization is a structure that satisfies all the properties of a graphical TQFT
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as described in the previous section, and specializes to classical angular mo-
mentum recoupling theory in the limit of its basic variable. The construction
is based on the properties of the bracket polynomial (as already described in
Sect. 3.4). A complete description of this theory can be found in the book
“Temperley–Lieb Recoupling Theory and Invariants of Three-Manifolds” by
Kauffman and Lins [26].

The “q-deformed” spin networks that we construct here are based on the
bracket polynomial relation (see Figs. 3.31 and 3.32).

...

...

n strands

=
n

n
= (A–3) ~σ(1/{n}!) Σ

~

=

A A–1

= –A2 – A–2

= +

{n}! = Σ
σ ε Sn

σ ε Sn

(A–4)
t(σ)

t(σ)

=
n

n

= 0

= d

Fig. 3.31. Basic projectors

= −1/δ

= −Δ   /Δn n+1

n 1 1 n 1 1

n
1

=
2

Δ –1 = 0

Δ n + 1 = δΔn

Δ 0 = 1

–
n–1Δ

Fig. 3.32. Two strand projector
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In Fig. 3.31, we indicate how the basic projector (symmetrizer, Jones-
Wenzl projector) is constructed on the basis of the bracket polynomial ex-
pansion. In this technology, a symmetrizer is a sum of tangles on n strands
(for a chosen integer n). The tangles are made by summing over braid lifts of
permutations in the symmetric group on n letters, as indicated in Fig. 3.31.
Each elementary braid is then expanded by the bracket polynomial relation
as indicated in Fig. 3.31 so that the resulting sum consists of flat tangles
without any crossings (these can be viewed as elements in the Temperley–
Lieb algebra). The projectors have the property that the concatenation of
a projector with itself is just that projector, and if you tie two lines on the
top or the bottom of a projector together, then the evaluation is zero. This
general definition of projectors is very useful for this theory. The two-strand
projector is shown in Fig. 3.32. Here the formula for that projector is par-
ticularly simple. It is the sum of two parallel arcs and two turn-around arcs
(with coefficient −1/d, with d = −A2−A−2 is the loop value for the bracket
polynomial). Figure 3.32 also shows the recursion formula for the general pro-
jector. This recursion formula is due to Jones and Wenzl and the projector in
this form, developed as a sum in the Temperley–Lieb algebra (see Sect. 3.9),
is usually known as the Jones–Wenzl projector .

The projectors are combinatorial analogs of irreducible representations of
a group (the original spin nets were based on SU(2) and these deformed nets
are based on the corresponding quantum group to SU(2)). As such the reader
can think of them as “particles”. The interactions of these particles are gov-
erned by how they can be tied together into three vertices (see Fig. 3.33). In
Fig. 3.33, we show how to tie three projectors, of a, b, c strands, respectively,
together to form a three vertex. In order to accomplish this interaction, we
must share lines between them as shown in that figure so that there are non-
negative integers i, j, k so that a = i + j, b = j + k, and c = i + k. This is
equivalent to the condition that a + b + c is even and that the sum of any
two of a, b, c is greater than or equal to the third. For example a + b ≥ c.
One can think of the vertex as a possible particle interaction where [a] and
[b] interact to produce [c]. That is, any two of the legs of the vertex can be
regarded as interacting to produce the third leg.

There is a basic orthogonality of three vertices as shown in Fig. 3.34.
Here if we tie two three-vertices together so that they form a “bubble” in

a b

c c

i

j

k

a b

i + j = a
j + k = b
i + k = c

Fig. 3.33. Vertex
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=

a

b

a

c d
Δa

δa
b

ac d

a

=
a

= Θ(a, c, d)

Θ(a, c, d)

a a= = Δa

Fig. 3.34. Orthogonality of trivalent vertices

the middle, then the resulting network with labels a and b on its free ends
is a multiple of an a-line (meaning a line with an a-projector on it) or zero
(if a is not equal to b). The multiple is compatible with the results of closing
the diagram in the equation of Fig. 3.34 so the two free ends are identified
with one another. On closure, as shown in the figure, the left-hand side of the
equation becomes a theta graph and the right-hand side becomes a multiple of
a “delta” where Δa denotes the bracket polynomial evaluation of the a-strand
loop with a projector on it. The Θ(a, b, c) denotes the bracket evaluation of
a theta graph made from three trivalent vertices and labeled with a, b, c on
its edges.

There is a recoupling formula in this theory in the form shown in Fig. 3.35.
Here there are “6-j symbols”, recoupling coefficients that can be expressed,
as shown in Fig. 3.35, in terms of tetrahedral graph evaluations and theta
graph evaluations. The tetrahedral graph is shown in Fig. 3.36. One derives

{ }a b
c d

i

jΣ=
j

a
a

b
b

c
c d

d

i
j

Fig. 3.35. Recoupling formula
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Fig. 3.36. Tetrahedron network

the formulas for these coefficients directly from the orthogonality relations for
the trivalent vertices by closing the left-hand side of the recoupling formula
and using orthogonality to evaluate the right-hand side. This is illustrated in
Fig. 3.37. Finally, there is the braiding relation, as illustrated in Fig. 3.38.

{ }a b
c d

i

jΣ=
j

a
a

b
b

c c dd

i jk

Σ=
j

Δ j δ j

k

k{ }a b
c d

i

j

=
Δ{ }a b

c d

i

k

Θ(a, b, j)

Θ(a, b, k)

Θ(a, b, k)

Θ(c, d, k)

Θ(c, d, k)

Θ(c, d, j)

k

={ }a b
c d

i
k

[ ]Tet
a b
c d

i
k

Δ j Δ j

Δk

Fig. 3.37. Tetrahedron formula for recoupling coefficients
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Fig. 3.38. Local braiding formula
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With the braiding relation in place, this q-deformed spin network theory
satisfies the pentagon, hexagon, and braiding naturality identities needed for
a topological quantum field theory. All these identities follow naturally from
the basic underlying topological construction of the bracket polynomial. One
can apply the theory to many different situations.

3.11.1 Evaluations

In this section, we discuss the structure of the evaluations for Δn and the
theta and tetrahedral networks. We refer to [26] for the details behind these
formulas. Recall that Δn is the bracket evaluation of the closure of the
n-strand projector, as illustrated in Fig. 3.34. For the bracket variable A,
one finds that

Δn = (−1)nA
2n+2 −A−2n−2

A2 −A−2
.

One sometimes writes the quantum integer

[n] = (−1)n−1Δn−1 =
A2n −A−2n

A2 −A−2
.

If
A = eiπ/2r,

where r is a positive integer, then

Δn = (−1)n sin((n+ 1)π/r)
sin(π/r)

.

Here the corresponding quantum integer is

[n] =
sin(nπ/r)
sin(π/r)

.

Note that [n + 1] is a positive real number for n = 0, 1, 2, . . . r − 2 and that
[r − 1] = 0.

The evaluation of the theta net is expressed in terms of quantum integers
by the formula

Θ(a, b, c) = (−1)m+n+p [m+ n+ p+ 1]![n]![m]![p]!
[m+ n]![n+ p]![p+m]!

,

where
a = m+ p, b = m+ n, c = n+ p .

Note that
(a+ b+ c)/2 = m+ n+ p .

When A = eiπ/2r, the recoupling theory becomes finite with the restriction
that only three vertices (labeled with a, b, c) are admissible when a+ b+ c ≤
2r − 4. All the summations in the formulas for recoupling are restricted to
admissible triples of this form.
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3.11.2 Symmetry and Unitarity

The formula for the recoupling coefficients given in Fig. 3.37 has less symme-
try than is actually inherent in the structure of the situation. By multiplying
all the vertices by an appropriate factor, we can reconfigure the formulas in
this theory so that the revised recoupling transformation is orthogonal, in the
sense that its transpose is equal to its inverse. This is a very useful fact. It
means that when the resulting matrices are real, then the recoupling trans-
formations are unitary. We shall see particular applications of this viewpoint
later in the lecture.

Figure 3.39 illustrates this modification of the three vertex. Let
Vert[a, b, c] denote the original three vertex of the Temperley–Lieb recou-
pling theory. Let ModVert[a, b, c] denote the modified vertex. Then we have
the formula

ModVert[a, b, c] =

√√
ΔaΔbΔc√
Θ(a, b, c)

Vert[a, b, c] .

Lemma 2. For the bracket evaluation at the root of unity A = eiπ/2r, the
factor

f(a, b, c) =

√√
ΔaΔbΔc√
Θ(a, b, c)

is real, and can be taken to be a positive real number for (a, b, c) admissible
(i.e., a+ b+ c ≤ 2r − 4).

Proof. By the results from the previous subsection,

Θ(a, b, c) = (−1)(a+b+c)/2Θ̂(a, b, c),

where Θ̂(a, b, c) is positive real, and

ΔaΔbΔc = (−1)(a+b+c)[a+ 1][b+ 1][c+ 1],

where the quantum integers in this formula can be taken to be positive real.
It follows from this that

f(a, b, c) =

√√
[a+ 1][b+ 1][c+ 1]

Θ̂(a, b, c)
,

showing that this factor can be taken to be positive real. ��

a b

c

a b

c

=
Θ(a, b, c)

Δa  Δb  Δc

Fig. 3.39. Modified three vertex
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Fig. 3.40. Modified bubble identity

In Fig. 3.40, we show how this modification of the vertex affects the non-
zero term of the orthogonality of trivalent vertices (cf. Fig. 3.34). We refer to
this as the “modified bubble identity”. The coefficient in the modified bubble
identity is

√
ΔbΔc

Δa
= (−1)(b+c−a)/2

√
[b+ 1][c+ 1]

[a+ 1]
,

where (a, b, c) form an admissible triple. In particular b + c − a is even and
hence this factor can be taken to be real.

We rewrite the recoupling formula in this new basis and emphasize that
the recoupling coefficients can be seen (for fixed external labels a, b, c, d) as a
matrix transforming the horizontal “double-Y ” basis to a vertically disposed
double-Y basis. In Figs. 3.41, 3.42, and 3.43, we have shown the form of this
transformation, using the matrix notation

M [a, b, c, d]ij

for the modified recoupling coefficients. In Fig. 3.41, we derive an explicit
formula for these matrix elements. The proof of this formula follows directly
from trivalent–vertex orthogonality (see Figs. 3.34 and 3.37) and is given in
Fig. 3.41. The result shown in Figs. 3.41 and 3.42 is the following formula for
the recoupling matrix elements

M [a, b, c, d]ij = ModTet

(
a b i
c d j

)
/
√
ΔaΔbΔcΔd ,
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Fig. 3.41. Derivation of modified recoupling coefficients
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where
√
ΔaΔbΔcΔd is short hand for the product

√
ΔaΔb

Δj

√
ΔcΔd

Δj
Δj

= (−1)(a+b−j)/2(−1)(c+d−j)/2(−1)j

√
[a+ 1][b+ 1]

[j + 1]

√
[c+ 1][d+ 1]

[j + 1]
[j + 1]

= (−1)(a+b+c+d)/2
√

[a+ 1][b+ 1][c+ 1][d+ 1] .

In this form, since (a, b, j) and (c, d, j) are admissible triples, we see that this
coefficient can be taken to be real, and its value is independent of the choice
of i and j. The matrix M [a, b, c, d] is real valued.

It follows from Fig. 3.35 (turn the diagrams by 90◦) that

M [a, b, c, d]−1 = M [b, d, a, c] .

In Fig. 3.44, we illustrate the formula

M [a, b, c, d]T = M [b, d, a, c] .

It follows from this formula that

M [a, b, c, d]T = M [a, b, c, d]−1 .

Hence M [a, b, c, d] is an orthogonal, real-valued matrix.

Theorem 5. In the Temperley–Lieb theory we obtain unitary (in fact real
orthogonal) recoupling transformations when the bracket variable A has the
form A = eiπ/2r for r a positive integer. Thus we obtain families of unitary
representations of the Artin braid group from the recoupling theory at these
roots of unity.
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Fig. 3.44. Modified matrix transpose
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Proof. The proof is given in the discussion above. ��

In Sect. 3.12, we shall show explicitly how these methods work in the case
of the Fibonacci model, where A = e3iπ/5.

3.12 Fibonacci Particles

In this section and the next, we detail how the Fibonacci model for anyonic
quantum computing [61, 62] can be constructed by using a version of the
two-stranded bracket polynomial and a generalization of Penrose spin net-
works. This is a fragment of the Temperly–Lieb recoupling theory [26]. We
already gave in the preceding sections a general discussion of the theory of
spin networks and their relationship with quantum computing.

The Fibonacci model is a TQFT that is based on a single “particle” with
two states that we shall call the marked state and the unmarked state. The
particle in the marked state can interact with itself either to produce a single
particle in the marked state, or to produce a single particle in the unmarked
state. The particle in the unmarked state has no influence in interactions (an
unmarked state interacting with any state S yields that state S). One way to
indicate these two interactions symbolically is to use a box, for the marked
state and a blank space for the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency:
and

2. Nesting: .

With this convention, we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The
syntactical rules for operating the asterisk are the following: the asterisk is
a stand-in for no mark at all, and it can be erased or placed wherever it is
convenient to do so. Thus

= ∗ .
We shall make a recoupling theory based on this particle, but it is worth

noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules
has been studied and formalized in [63] and correlated with Boolean algebra
and classical logic. Here within and next to are ways to refer to the two
sides delineated by the given distinction. From this point of view, there are
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two modes of relationship (adjacency and nesting) that arise at once in the
presence of a distinction.

From here on, we shall denote the Fibonacci particle by the letter P . Thus
the two possible interactions of P with itself are as follows:

1. P, P −→ ∗
2. P, P −→ P

In Fig. 3.45, we indicate in small tree diagrams the two possible interac-
tions of the particle P with itself. In the first interaction, the particle vanishes,
producing the asterix. In the second interaction, the particle a single copy of
P is produced. These are the two basic actions of a single distinction relative
to itself, and they constitute our formalism for this very elementary particle.

In Fig. 3.46, we have indicated the different results of particle processes,
where we begin with a left-associated tree structure with three branches, all
marked and then four branches all marked. In each case, we demand that
the particles interact successively to produce an unmarked particle in the
end, at the root of the tree. More generally one can consider a left-associated
tree with n upward branches and one root. Let T (a1, a2, · · · , an : b) denote

*

P P P P

P

Fig. 3.45. Fibonacci particle interaction

* *

*

*

| 0 > | 1 >

111
0

1111
0

dim(V       ) = 2

dim(V     ) = 1

P P P

P

P

P

P P P PP P

P

P

Fig. 3.46. Fibonacci tree
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such a tree with particle labels a1, · · · , an on the top and root label b at the
bottom of the tree. We consider all possible processes (sequences of particle
interactions) that start with the labels at the top of the tree, and end with
the labels at the bottom of the tree. Each such sequence is regarded as a
basis vector in a complex vector space

V a1,a2,··· ,an

b

associated with the tree. In the case where all the labels are marked at the
top and the bottom label is unmarked, we shall denote this tree by

V 111···11
0 = V

(n)
0 ,

where n denotes the number of upward branches in the tree. We see from
Fig. 3.46 that the dimension of V (3)

0 is 1, and that

dim(V (4)
0 ) = 2 .

This means that V (4)
0 is a natural candidate in this context for the two-qubit

space.
Given the tree T (1, 1, 1, · · · , 1 : 0) (n marked states at the top, an un-

marked state at the bottom), a process basis vector in V
(n)
0 is in direct cor-

respondence with a string of boxes and asterisks (1s and 0s) of length n− 2
with no repeated asterisks and ending in a marked state. See Fig. 3.46 for an
illustration of the simplest cases. It follows from this that

dim(V (n)
0 ) = fn−2 ,

where fk denotes the kth Fibonacci number:

*

**

* ** * *PPPPP PPPP P

P

PP P P

Tree of squences with no occurence of * *
Fig. 3.47. Fibonacci sequence
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f0 = 1 , f1 = 1 , f2 = 2 , f3 = 3 , f4 = 5 , f5 = 8, · · · ,

where
fn+2 = fn+1 + fn .

The dimension formula for these spaces follows from the fact that there are fn

sequences of length n− 1 of marked and unmarked states with no repetition
of an unmarked state. This fact is illustrated in Fig. 3.47.

3.13 The Fibonacci Recoupling Model

We now show how to make a model for recoupling the Fibonacci particle
by using the Temperley–Lieb recoupling theory and the bracket polynomial.
Everything we do in this section will be based on the 2-projector, its prop-
erties and evaluations based on the bracket polynomial model for the Jones
polynomial. While we have outlined the general recoupling theory based on
the bracket polynomial in earlier sections, one can make the calculations for
the Fibonacci model completely self-contained, using only basic information
about the bracket polynomial, and the essential properties of the 2-projector
as shown in Fig. 3.48. See [1] for the details of this, or work them out for
yourself! In Fig. 3.48, we state the definition of the 2-projector, list its two
main properties (the operator is idempotent and a self-attached strand yields
a zero evaluation), and give diagrammatic proofs of these properties.

In Fig. 3.49, we show the essence of the Temperley–Lieb recoupling model
for the Fibonacci particle. The Fibonacci particle is, in this mathematical
model, identified with the 2-projector itself. As the reader can see from

=

= = = 0

= 0

= =

=

−1/δ

−(1/δ)δ−1/δ

− 1/δ

Fig. 3.48. The 2-projector
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=

Forbidden
Process

Fig. 3.49. Fibonacci particle as 2-projector

Fig. 3.49, there are two basic interactions of the 2-projector with itself: one
giving a 2-projector, the other giving nothing. This is the pattern of self-
interaction of the Fibonacci particle. There is a third possibility, depicted
in Fig. 3.49, where two 2-projectors interact to produce a 4-projector. We
could remark at the outset that the 4-projector will be zero if we choose the
bracket polynomial variable A = e3iπ/5. If we wish, we can assume that the
4-projector is forbidden and deduce that the theory has to be at this root of
unity [1].

Note that in Fig. 3.49, we have adopted a single-strand notation for the
particle interactions, with a solid strand corresponding to the marked par-
ticle, a dotted strand (or nothing) corresponding to the unmarked particle.
A dark vertex indicates an interaction point or may be used to indicate the
single strand is shorthand for two ordinary strands. Remember that these
are all shorthand expressions for underlying bracket polynomial calculations.
Vertices in this theory have to be readjusted for unitarity just as we described
in our general treatment of the recoupling theory in the previous sections.

In Figs. 3.50 and 3.51, we indicate the form of the recoupling matrix for
this model, and the effect of braiding at a three vertex. When the three vertex
has three marked lines, then the braiding operator is multiplication by −A4,
as in Fig. 3.51. When the three vertex has two marked lines, then the braiding
operator is multiplied by A8, as shown in Fig. 3.51.

a b

c d+

+=

=

Fig. 3.50. Recoupling for 2-projectors
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= –A4

= A8

Fig. 3.51. Braiding at the three vertex

The real symmetric recoupling matrix F is given by the equation

F =
(
a b
c d

)
=
(
τ
√
τ√

τ −τ

)
,

where τ = 1/Δ and Δ = (1 +
√

5)/2 is the golden ratio. This gives the
Fibonacci model. Using Fig. 3.51, we have that the local braiding matrix for
the model is given by the formula below with A = e3iπ/5

R =
(
−A4 0

0 A8

)
=
(
e4iπ/5 0

0 −e2iπ/5

)
.

The simplest example of a braid group representation arising from this
theory is the representation of the three-strand braid group generated by
S1 = R and S2 = FRF (remember that F = FT = F−1). The matrices S1

and S2 are both unitary, and they generate a dense subset of the unitary group
U(2), supplying the first part of the transformations needed for quantum
computing.

3.14 Quantum Computation of Colored Jones
Polynomials and the Witten–Reshetikhin–Turaev
Invariant

In this section, we make some brief comments on the quantum computation
of colored Jones polynomials.

First, consider Fig. 3.52. In that figure we illustrate the calculation of the
evaluation of the (a) – colored bracket polynomial for the plat closure P (B)
of a braid B. The reader can infer the definition of the plat closure from
Fig. 3.52. One takes a braid on an even number of strands and closes the top
strands with each other in a row of maxima. Similarly, the bottom strands
are closed with a row of minima. It is not hard to see that any knot or link
can be represented as the plat closure of some braid.
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Fig. 3.52. Evolution of the plat closure of a braid

The (a) – colored bracket polynomial of a link L, denoted < L >a, is
the evaluation of that link where each single strand has been replaced by a
parallel strands and the insertion of Jones–Wenzl projector (as discussed in
Sect. 3.11). We then see that we can use our discussion of the Temperley–Lieb
recoupling theory as in Sects. 3.11, 3.12, and 3.13 to compute the value of the
colored bracket polynomial for the plat closure PB. As shown in Fig. 3.52,
we regard the braid as acting on a process space V a,a,··· ,a

0 and take the case
of the action on the vector v whose process space coordinates are all zero.
Then the action of the braid takes the form

Bv(0, · · · , 0) = Σx1,··· ,xn
B(x1, · · · , xn)v(x1, · · · , xn) ,

where B(x1, · · · , xn) denotes the matrix entries for this recoupling transfor-
mation and v(x1, · · · , xn) runs over a basis for the space V a,a,··· ,a

0 . Here n
is even and equal to the number of braid strands. In Fig. 3.52, we illustrate
with n = 4. Then, as the figure shows, when we close the top of the braid
action to form PB, we cut the sum down to the evaluation of just one term.
In the general case, we will get

< PB >a= B(0, · · · , 0)Δn/2
a .
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The calculation simplifies to this degree because of the vanishing of loops in
the recoupling graphs. The vanishing result is stated in Fig. 3.52.

The colored Jones polynomials are normalized versions of the colored
bracket polynomials, differing just by a normalization factor.

In order to consider quantum computation of the colored bracket or col-
ored Jones polynomials, we therefore can consider quantum computation of
the matrix entries B(0, · · · , 0). These matrix entries in the case of the roots
of unity A = eiπ/2r and for the a = 2 Fibonacci model with A = e3iπ/5 are
parts of the diagonal entries of the unitary transformation that represents
the braid group on the process space V a,a,··· ,a

0 . We can obtain these matrix
entries by using the Hadamard test as described in Sect. 3.8. As a result we
get relatively efficient quantum algorithms for the colored Jones polynomials
at these roots of unity, in essentially the same framework as we described in
Sect. 3.8, but for braids of arbitrary size. The computational complexity of
these models is essentially the same as the models for the Jones polynomial
discussed in [36].

It is worth remarking here that these algorithms give quantum algorithms
for computing not only the colored bracket and Jones polynomials but also the
Witten–Reshetikhin–Turaev (WRT ) invariants evaluated at the above roots
of unity. The reason for this is that the WRT invariant, in unnormalized
form, is given as a finite sum of colored bracket polynomials:

WRT (L) = Σr−2
a=0Δa < L >a .

This means that we have, in principle, a quantum algorithm for the computa-
tion of the Witten functional integral [46] via this knot-theoretic combinatorial

A4 –4= A + + δ

+ δA 4–4= A+

– = 4A A–4–( ) –( )

– = 4A A–4–( ) –( )

= A8

Fig. 3.53. Dubrovnik polynomial specialization at two strands
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topology. It would be very interesting to understand a more direct approach
to such a computation via quantum field theory and functional integration.

Finally, we note that in the case of the Fibonacci model, the (2)-colored
bracket polynomial is a special case of the Dubrovnik version of the Kauffman
polynomial [64]. See Fig. 3.53 for diagrammatics that resolve this fact. The
skein relation for the Dubrovnik polynomial is boxed in this figure. Above the
box, we show how the double strands with projectors reproduce this relation.
This observation means that in the Fibonacci model, the natural underlying
knot polynomial is a special evaluation of the Dubrovnik polynomial, and
the Fibonacci model can be used to perform quantum computation for the
values of this invariant.
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4 Entanglement in Phase Space

A.M. Ozorio de Almeida

Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180,
Rio de Janeiro, RJ, Brazil.

4.1 Introduction

The realization that quantum mechanics admits entangled states goes back
to Schrödinger in 1926 [1]. He went on to coin the term entanglement in
1935 [2], but the dramatic example of a biological cat coupled to a decaying
nucleus was never meant to be operational. Einstein, Rosen and Podolsky
(EPR) [3] discussed an example of a simple entangled bipartite state in the
same year. Their concern was the compatibility between Heisenberg’s in-
determinacy principle and the generation of strong correlations through a
measurement on a member of a pair of particles, even when they could no
longer be interacting. It was the formulation of Bell inequalities, starting in
1964 [4, 5] that provided a litmus test for nonlocal correlations in quantum
mechanics. The initial concern was centred on hidden variable theories and
the possibility of their emulating quantum correlations even for particles that
have ceased to interact. Such violations of local causality, detected by Bell
inequalities, could not have developed within any kind of classically evolved
ensemble, irrespective of whether the variables are explicit or hidden.

Quantum information theory [6] has given a new boom to the study of
the qualitative distinctions between classical and quantum mechanics and to
establishing their quantitative measures. There is nothing so dramatic about
the development of nonclassical correlations between particles that are still
undergoing an interaction, but this question has acquired promising appli-
cations in future quantum computations. Necessarily, these deal with finite-
dimensional (Hilbert) state spaces, for which the appropriate entanglement
measures are now well established.

One of the difficulties in applying semiclassical methods to the study of
entanglement is that the former have been developed for infinite-dimensional
Hilbert spaces. Not only are these an extrapolation from the few qubits that
have been usually considered in quantum information theory, but entangle-
ment is most clearly exhibited through the correlations in elementary either-
or experiments. This seems to privilege simple state spaces of a single qubit,
such as spin-1/2 systems. For this reason, Bohm’s version of EPR [7] has
become much more popular than the original full phase space version. A way
around this difficulty is to consider the measurement of special observables
that have only a pair of eigenvalues, even though they operate on states
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within an infinite space. It turns out that one of the most renowned phase
space representations in quantum mechanics, the Wigner–Weyl representa-
tion, is based on such operators. Usually, this representation is viewed as a
way of eliciting classical features in a quantum state, but it will be used here
mainly as a probe into nonclassical correlations.

The development of semiclassical theory throughout the last century al-
lows us to trace the classical skeleton underlying many features of quantum
evolution. These classical structures are the core of approximations that im-
prove asymptotically in the limit of large classical actions, or, more formally,
as Planck’s constant, � → 0. In the case of a finite-dimensional Hilbert space,
this becomes the limit of large dimensions. Even though entanglement is a
subtle phenomenon, it leads to gross violation of inequalities and to quan-
titative measures that are not beyond the accuracy of semiclassical approx-
imations. Therefore, it is appropriate to enquire into the manner in which
classical structures can be implicated in such a very nonclassical feature of
quantum mechanics.

Traditionally, semiclassical theory is concerned with the unitary quantum
evolution of closed systems, which are thus described classically by Hamilto-
nian dynamical systems. Each point in phase space accounts completely for
the state of the classical system that evolves along a trajectory. A bipartite
or multipartite system is accommodated in this correspondence by a higher
dimensional phase space. Each point still evolves as a single-dimensional (1-
D) trajectory, but its projections onto the subspaces, which describe the
succession of possible states of each component of the system, are also 1-D
trajectories in their own right, as shown in Fig. 4.1.

Fig. 4.1. The classical trajectories x1(t) and x2(t), for each component in its own
phase space, are projections of the full trajectory for the entire system
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Part of the power of Hamiltonian dynamics lies in the freedom to
transform between different sets of phase space coordinates. This canoni-
cal invariance emphasizes the importance of the unified evolution of the full
system over that of the component trajectories, which are seen to depend
on the particular choice of coordinates. In contrast, it is in the separation
into components that the phenomenon of quantum entanglement emerges.
The particular nature of quantum measurement lies behind this difference,
as is discussed in Sect. 4.2: It is only when this is combined to the preceding
unitary evolution, that the unclassical correlations between the components
become manifest.

Therefore, the study of the properties related to entanglement should be
viewed as an objective that is imposed externally on semiclassical physics,
which perhaps explains the low priority received by this goal so far. In these
lectures, we will only be concerned with the most elementary kind of entan-
glement, i.e., that of pure bipartite states, for which the measures of entan-
glement are well established. Even so, it will be seen that this simple case
requires the introduction of theoretical instruments of semiclassical theory
that are far from elementary. Not only do we need to cope with a higher
dimensional phase space for the description of a bipartite system, but it will
be shown how the simplest semiclassical description of operators is achieved
in a phase space with double the dimension of the one corresponding to the
states on which they act. Conversely, some of the most relevant structures
for entanglement, such as partial traces and probability densities, can be in-
terpreted as projections of the Wigner function, or sections of its Fourier
transform.

The following section reviews the different ways in which features of quan-
tum mechanics, interference and entanglement are nonclassical. Simple ex-
amples introduce the reflection symmetries, quite familiar for classical waves,
that will play a major role in the Wigner function formalism. Prior to this
though, it is useful to consider classical–quantum correspondence in a more
simple-minded way. This is the subject of Sect. 4.3, which introduces prod-
uct spaces for both quantum states and classical probability distributions in
phase space. In either case, the factorizability is broken by an interaction
Hamiltonian, leading to correlations for measurements on the different com-
ponents. In the classical case, these correlations are constrained by general
Bell inequalities. This section also introduces the Schmidt decomposition of
quantum states.

Section 4.4 reviews standard semiclassical theory for quantum states. Spe-
cial emphasis is given to products and factorization of both the phase spaces
themselves and the internal Lagrangian surfaces that support the quantum
states. This product structure is then generalized in Sect. 4.5 to the represen-
tation of operators. Dyadic operators of position or momentum eigenstates
form a complete linear basis for all quantum operators, which correspond to
planes in double phase space. Linear canonical transformations take these
into the phase space coordinates for the Weyl representation and the chord
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representation, its Fourier transform. These bases are associated respectively
to phase space reflections and translations and to the corresponding quantum
operators. In the case of the density operator, we thus obtain the Wigner
function and the chord function, both presented in Sect. 4.6. Though the
Wigner function cannot be interpreted as a probability distribution, because
it may be negative, it coincides with the difference for probabilities of mea-
suring either the positive or the negative eigenvalue of the reflection operator.
Section 4.7 is dedicated to projections of the Wigner function and sections
of the chord function, which represent the reduced density operators. The
loss of purity of the latter, obtained as integrals of the square of either the
reduced Wigner function or the reduced chord function, indicates that the
overall state is entangled.

It may be guessed that an initially classical pure state, the product of
Gaussian Wigner functions, would not be entangled by a simple rotation of
positions and momenta. After all, this class of states, including the original
EPR states, could stand in for a classical phase space distribution. However,
this is not so, as shown in Sect. 4.8: The reflection correlations for such
states violate Bell inequalities, even though measurements of positions and
momenta can only correlate classically. The transformation to centre of mass
coordinates for any number of particles, studied in Sect. 4.9, has similar
features. By invoking the Central Limit Theorem for Wigner functions, we
obtain features of the nonunitary evolution of the centre of mass in agreement
with Markovian theory, i.e., the exact solution of the Lindblad equation for
the density operator.

The final section relates double phase space geometry to the semiclassical
Wigner and chord functions. These are not known in detail for eigenstates
of chaotic Hamiltonians, but it has been proved that ergodic eigenstates are
supported by the entire energy shell. In this case, the unitary transformation
that factorizes the state can have no classical correspondence.

A lot of the experimental work related to entanglement has been carried
out in quantum optics. Rarely is the full generality of semiclassical states
employed there and one can rely mainly on states derived from the eigenstates
of the harmonic oscillator, even when phase space is invoked [8]. For this
reason, the initial examples of phase space structures are here chosen among
states of this type. The reader who wishes to avoid the more subtle aspects
of semiclassical theory can mostly skip Sects. 4.4, 4.10 and parts of 4.5.

4.2 Entanglement and Classical Physics

Entanglement is considered to be a quintessential quantum property which
defies all attempts at a classical correspondence. For this reason, its descrip-
tion in terms of the classical concept of phase space might appear foolhardy.
It could be that the semiclassical program of uncovering meaningful relation-
ships between XIX’th and XX’th century mechanics would be overstretched.
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Perhaps, though, such an endeavour would make more sense if it were recalled
that the usual validity of a classical description of macroscopic phenomena
can be attributed to the effect of decoherence. In its turn, this results from
the entanglement of a given system with an uncontrolled environment, caused
by interactions that can be minimized, but never entirely eliminated. Thus,
in spite of the fact that the common working languages employed in classi-
cal and quantum mechanics are quite alien to each other, it is hard to fully
comprehend why the outcome of decoherence should be the emerging ap-
propriateness of a classical description for quantum systems, unless we can
detect its traces even within entanglement itself. A simplified version of this
program will be sketched in Sect. 4.10.

Before attempting to establish a bridge between some features of quan-
tum entanglement and classical mechanics, it is worthwhile to consider the
more obvious way in which interference already separates these theories. In
contrast, the analogy of quantum mechanics with classical waves is much
smoother: The latter may be superposed linearly and they interfere in the
same way as matter waves. In a simple two-slit experiment, the initial quan-
tum state is prepared as a coherent superposition of momentum eigenstates,
with eigenvalues that can be classically measured: The probability for each
momentum direction is the same as for a uniform ensemble of classical
states. The evolution through a pair of slits generates classical interference,
equally observable in water waves, or sound waves. Quantum strangeness only
emerges if the intensity of the resulting interference pattern for the conju-
gate variable, the position, is interpreted as the probability for the position
measurement of a single particle, moving according to classical mechanics.
Even so, the particular nature of quantum measurement itself does not play
a prominent role in the phenomenon of quantum interference. The subsequent
quantum state is certainly redefined by the result of the measurement, but
this is not a crucial feature of quantum interference, no matter how unclas-
sical its interpretation for a single particle.

The success of the semiclassical treatment of interference phenomena is
no real surprise. If we start from Feynman’s path integral formalism [9, 10],
quantum evolution is described by a continuum of interfering paths. Semiclas-
sical theory merely groups these around a few particular classical trajectories
with their Feynman phase. The amplitude of each of these discrete interfer-
ing terms is then given by a local integration over the continuum of paths.
Classical mechanics takes its part in the theory, but there is no limitation
to classical phenomena and interference is well described. Indeed, the role of
classical mechanics is the same as ray optics in classical wave theory.

In contrast to interference, the unintuitive nature of entanglement is de-
rived from that of quantum measurement itself. In no way does this tally
with the common sense description of the macroscopic world. Nothing in our
everyday experience prepares us for the collapse of a state that is measured
into one of several possibilities. The common sense presupposition would be
that the effect of the measurement on the system could and should be made
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negligible. Entanglement highlights this phenomenon in a specially subtle
way because it involves pairs of measurements on systems with at least two
degrees of freedom, or components.

If we consider classical waves, or particles, it would be indeed strange to
imagine that such a collapse could result from the measurement of a subsys-
tem, thus constraining the possible states of the complementary subsystem:
It is well known that playing a note on a piano, i.e., exciting a finite string,
will provoke a response on the next octave string. Here we have two nearly
independent systems, stretched strings, weakly coupled by the surrounding
air. Perhaps, it is better to consider the same note on two nearby pianos, so
that we consider the interaction of identical systems. The wave form assumed
instantaneously by the pair of strings may be used to describe the state of
the whole system, or else, we may prefer the Fourier representation, in terms
of the eigenstates for the discrete set of allowed frequencies of each string.
These classical strings are completely analogous to the textbook example in
quantum mechanics of particles moving in 1-D, each in its own box. But there
is no way in which a photograph of one of the piano strings will affect the
sound produced by the other string, no matter how entangled the quantum
analogues happen to be! Likewise, the measurement of the frequency spec-
trum of the vibrations of one of the strings does not oblige it to choose among
the various overtones and we would be even more surprised if this led to a
correlated jump in the other string.

Yet this is just what we would expect for the analogous quantum system
composed of two particles in their 1-D boxes, coupled by the same Hamilto-
nian that may account for the atmospheric interaction. Such a measurement
would single out a discrete energy, or equivalently a discrete momentum mod-
ulus. Furthermore, in the quantum system, we could also measure the position
of the particle, with a probability density that is specified by the wave in-
tensity. No equivalent interpretation can be imputed to the classical wave, so
that such a position measurement would then be devoid of meaning.1

Just as there are measurements on a quantum system that are meaningless
for a classical wave, there are others that make no sense for a classical particle.
Consider the excitation of a piano string by the same note, but played on
a clarinet. This has only even harmonics because it is equivalent to a string
that is free on one side. Then only the even harmonics will be excited in the
string, which will be symmetric about its midpoint. Such an even (or odd)
parity, i.e., the symmetry (or antisymmetry) of the classical stationary wave,
is certainly a measurable property of the analogous quantum state. Indeed,
even a classical wave, a string that is free on one side, could in principle
be used as a probe to measure directly the even component of the wave,
instead of exciting it. But what would it mean to measure the parity of
the corresponding classical particle in a box? Generalizations of such parity

1 It should be remembered that the classical particle analogy here is not related
to the phonons that are generated by second quantization within each mode.
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measurements, distinguishing the eigenvalues of non-mechanical observables,
will play a major role in the following discussions of entanglement.

Measurement theory lies outside the scope of a semiclassical treatment.
However, such experimental outcomes will be preceded by (unitary) quan-
tum evolution, which is not so adverse to a classical description. Indeed the
process by which subsystems become entangled is a preparation that precedes
any quantum measurement. It is only in the probabilistic interpretation of
the subsequent measurement on the system that the quantum and the clas-
sical viewpoints fundamentally diverge. As it happens, standard measures of
entanglement require that the components of the system be completely de-
fined, but do not pre-specify the measurements to be performed. Thus, the
presence of entanglement only indicates the possibility that some subset of
measurements will have nonclassical correlations. It is precisely this lack of
definition with respect to future quantum measurements that allows space
for a semiclassical treatment.

The study of classical waves displays many of the properties of a simple
quantum system. Indeed, Rayleigh’s The Theory of Sound [11] anticipates
some results later rediscovered in semiclassical theory. However, each piano
string is a system with an infinite number of degrees of freedom. Though it is
not forbidden to consider coupled fields,2 the following lectures will concern
mainly systems with a finite number of degrees of freedom. In most cases,
two degrees of freedom already suffice to discuss the relation between the
concept of entanglement and classical mechanics. So we start with a review
of classical–quantum correspondence.

4.3 Classical–Quantum Correspondence

The simplest quantum systems with a classical correspondence have a single
degree of freedom, e.g., a particle constrained to move on a straight line. The
classical state of the system is described by its position, q, and its momentum,
p. Together they define a point in phase space, x = (p, q), which is a 2-D plane.
Perhaps, classical state space would be a more appropriate term because each
point specifies all future motion of a classical system, once the Hamiltonian,
H(x), is specified, through Hamilton’s equations:

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (4.1)

These equations may be compactified into the form

ẋ = J
∂H

∂x
, (4.2)

with the definition of the (2× 2)-dimensional matrix
2 Perhaps, quantum superstring theory will tackle entanglement someday.
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J =
[

0 −1
1 0

]
, (4.3)

acting on the phase space points, x = (p, q). Unless H(x) is quadratic, this
motion is nonlinear.

Corresponding to this 2-D plane, quantum mechanics matches the states
|ψ〉 of an infinite-dimensional Hilbert space, H, on which act the operators, q̂
and p̂. Each eigenstate of q̂, labeled by the eigenvalue q0, corresponds to the
vertical line, q = q0, whereas the horizontal phase space lines are matched
by eigenstates of p̂. These operators do not commute, [ p̂, q̂ ] = i�, but if we
appropriately symmetrize the order in which p and q appear in H(x), then
the motion of the states |ψ〉 is also determined by the quantum Hamiltonian
H(x̂), through the linear equation

i�
∂

∂t
|ψ〉 = H(x̂)|ψ〉, (4.4)

i.e., Schrödinger’s equation.
The uncertainty principle excludes the existence of a quantum state that

corresponds precisely to a phase space point. However, the unavoidable dis-
persion in measurements of position or momentum allows to seek an approx-
imate correspondence with probability distributions of phase space points.
This is unsatisfactory as far as interpretation is concerned because proba-
bilities are associated to the square of a state rather than the state itself.
Nonetheless, a certain intuition can be obtained through this analogy. Given
a phase space probability density, f(x), the expectation value of any classical
observable O(x) is given by

E(O) =
∫

dx O(x) f(x) . (4.5)

Hence, the dispersions in position and momentum are δq2 = E
(
(q −E(q))2

)

and δp2 = E
(
(p− E(p))2

)
. The uncertainty principle then imposes that only

phase space distributions for which Δ′ = δqδp ≥ � should be considered.
However, this quantity is not a classical invariant. The flow, x(0) → x(t),

generated by the Hamiltonian is a canonical transformation, so that [12], for
all t, ∮

γ0

p(0) · dq(0) =
∮

γt

p(t) · dq(t) , (4.6)

where γ0 is any circuit and γ0 → γt. General Hamiltonian evolution will
stretch and bend any closed curve that is initially compact, so that a prob-
ability distribution that is unity inside γ0 and zero outside will not have
constant Δ′. Linear canonical transformations, that is, symplectic transfor-
mations, are well known to be specially favourable for classical–quantum
correspondence, as will be further discussed. It will be shown in Sect. 4.6
that, Δ, the determinant of the covariance matrix ,
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K =
[
δp δpq
δpq δq

]
, (4.7)

where (δpq)2 = E (pq − E(p)E(q)), is invariant under symplectic transforma-
tions.

To discuss entanglement, we need more than one degree of freedom. Quan-
tum states can then be decomposed into a basis of product states,

|ψ〉 = |ψ1〉 ⊗ . . . |ψl〉 ⊗ . . . |ψL〉 , (4.8)

which span the full Hilbert space, H = H1⊗ . . .Hl⊗ . . .HL, i.e., the tensor
product of the factor Hilbert spaces that describe each degree of freedom.
Likewise, the full phase space is now a Cartesian product of 2-D conjugate
planes, each the phase space for a particular degree of freedom,

x = x1 × . . . xl × . . . xL (4.9)

and thus has 2L dimensions. However, we must be wary of the difference
between the classical and quantum geometries: a phase space strip, δq, corre-
sponds to this range of eigenvalues for the operator q̂. This set of eigenstates
spans an infinite-dimensional subspace of the product Hilbert space, what-
ever the number of degrees of freedom. On the other hand, each of these
position eigenstates corresponds to one of the parallel L-D q-planes within
the 2L-D phase space strip.

The classical or quantum motion for systems with more than one degree
of freedom is still defined by a Hamiltonian, H(x), or H(x̂), but now ∂H/∂x
is a 2L-dimensional vector and J is a block matrix. We shall also use the skew
product ,

x ∧ x′ =
L∑

n=1

(plq
′
l − qlp

′
l) = J x · x′ . (4.10)

This symplectic area of the parallelogram formed by the vectors x and x′ is
invariant with respect to symplectic transformations. Again, these are linear
canonical transformations, with (4.6) interpreted as a line integral in the 2L-
D phase space. For higher dimensional systems, all even dimensional volumes,
from 2 to 2L, are preserved by canonical transformations [12].

If the degrees of freedom are completely decoupled, each with its own
probability distribution, fl(xl), the full probability distribution will be just
the product,

f(x) = f1(x1) . . . fl(xl) . . . fL(xL) . (4.11)

In this case, the probability distribution for a single degree of freedom is
reobtained by tracing over the other variables:

f1(x1) =
∫
f(x) dx2 . . . dxL . (4.12)
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If the full probability distribution cannot be factored into a product, the
above equation then defines the marginal distribution. This process foreshad-
ows that of partial tracing over the density operator, to be studied in Sect. 4.7,
which is central to the study of entanglement.

The product nature of the classical distribution will be retained through-
out the evolution if the full classical Hamiltonian is purely additive,

H(x) = H1(x1) + . . . Hl(xl) + . . . HL(xL) , (4.13)

i.e., if there is no coupling between the motions of the several degrees of
freedom. This follows from the decoupling of Hamilton’s equations into

ẋl = Jl
∂Hl

∂xl
, (4.14)

for each degree of freedom. In other words, if k �= l, then xl(t;xl0) does not
depend on xk (nor on the initial value, xk0). Furthermore, we then have

fl(t;xl) = fl(0;xl(−t;xl)) and f(t;x) = f1(t;x1) . . . fL(t;xL) , (4.15)

where xl(−t;xl) specifies the past location of xl. Likewise, the volumes in
each subspace will be preserved, and the conservation of the 2L-dimensional
volume is just that resulting from the conservation of the factor volumes.

For a classical system, the transition from product probabilities to gen-
eral probabilities can only be generated by coupling terms in the driving
Hamiltonian, containing cross products, which are at least bilinear in the
different variables. A general classical observable will be a function of all the
phase space variables, and its expectation is accordingly given by (4.5). For
instance, this might be the either-or observable, O1 = ±1 for detecting some
physical properties associated with one particle, or the detection of O2 = ±1
for a second particle. For classical particles that have been allowed to drift
sufficiently far from each other after interacting, the result of the O1 mea-
surement will not affect the O2 measurement and vice versa. Therefore, the
correlation must be represented in the form

E(O1;O2) = E(O1 O2) =
∫

dx1dx2 O1(x1)O2(x2) f(x1, x2) . (4.16)

This equation has the same form as correlations postulated for local hidden
variable theories [4, 13]. Indeed, one of the reasons for this choice is that
(4.16) must hold for any evolution of f(x) governed by classical mechanics.
This form for the correlation between different components of the system is
then taken as a prerequisite for theories that in all other respects should give
the same results as quantum mechanics. Since this is certainly not one of the
objectives of classical mechanics, such conjectures then necessarily demand
extra, unknown and hence hidden variables.

It is due to the seminal work of Bell [4] that we are able to compare,
through inequalities, the correlations predicted by quantum mechanics with
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a very wide range of possible local correlations. The point is that any mea-
surement affects the entire quantum state, i.e., both its components, unless
the state happens to be an eigenstate of the measured observable. So quan-
tum measurements are not local in the sense that led to (4.16). In case of the
general CHSH inequality [6, 14], involving either-or observables, O1a, O1b,
O2a and O2b, (4.16) implies that

|E(O1a;O2a) + E(O1a;O2b) + E(O1b;O2a)− E(O1b;O2b)| ≤ 2 . (4.17)

As well as constraining possible hidden variable theories, this inequality can
be used as a detector of nonclassical correlations in quantum mechanics.
This kind of nonclassicality, entanglement , is much more subtle than quan-
tum interference effects, as will be discussed in the later sections. A dip into
Bertlmann’s socks and the nature of reality [5, 15] by Bell provides a de-
lightful discussion of all the main points concerning classical locality versus
quantum correlations. The book by Peres [13] is also recommended.

It is worthwhile to discuss some specific examples of systems with more
than one degree of freedom. An obvious possibility is a collection of particles,
each moving in one dimension. Another is a single particle moving in two,
or three dimensions. Classical and quantum mechanics make no distinction
between these alternative interpretations of the dynamical variables. All that
is demanded is that the variables pertaining to different degrees of freedom
commute, [ p̂k, q̂j ] = i�δkj , or, correspondingly, that the classical Poisson
bracket {pk, qj} = δkj (see e.g., [16]). We can also use angular momentum
and their conjugate angles. But are other variables, obtained through classical
canonical transformations, allowed?

For example, consider our piano string, now modeled as L masses con-
nected by harmonic springs. We can switch to the L normal modes of vibra-
tion. This is a linear canonical transformation, which substitutes the original
L conjugate planes, xl = (pl, ql), by new conjugate planes, x′l = (p′l, q

′
l), that

now describe collective motions of the L masses. This is also a proper phase
space to be quantized, x′l → x̂′l. Another important example of a quantiz-
able canonical transformation follows from the description of a collection of
particles in terms of the centre of mass together with internal coordinates.

Whatever the physical realization, symplectic transformations correspond
exactly to unitary quantum transformations and hence to equivalent quan-
tum systems [17]. These transformations generally redefine the components
of the full system and may take an entangled state into a product state, or
vice versa. Any measure of entanglement is affected by such a general trans-
formation, so one requires only that the measure be invariant with respect to
local unitary transformations, lying within each separate component. As for
nonlinear canonical transformations, these are not exactly matched by quan-
tum unitary transformations [17] and, hence, cannot be directly quantized.
It might still be useful sometimes to push this correspondence through, but
it must be remembered that the result is only a semiclassical approximation.
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Taking again the continuum limit, L→∞, each normal mode of the finite
chain converges onto one of the lower modes of the continuous string. There
is no essential difference between the interaction and hence the entanglement
among these modes of the continuum and that of finite modes (caused by
residual non-quadratic terms in the Hamiltonian). In each case, there cor-
responds a plane in the phase space, which is of infinite-dimension in the
case of a field. The entanglement between modes of the electromagnetic field
within a finite cavity also has a similar interpretation in terms of a classical
field. The unperturbed motion is now that of a quantized harmonic oscillator,
corresponding to a classical oscillation in each phase plane .

Another example is that of a particle with internal structure. The latter
may be described by an angular momentum, coupled to the translational
degrees of freedom by an external field. The Stern–Gerlach experiment de-
scribes just such a system, in which the magnetic moment, tied to the spin
angular momentum of the electron is coupled to its position by an inho-
mogeneous magnetic field. The spin is an intrinsically quantum mechanical
two-level system and the interest in quantum information theory tends to
emphasise such simple quantum systems. But, in principle, there is no differ-
ence between this case and a Rydberg atom, prepared in a state with a large
electric dipole moment, coupled to position through an inhomogeneous elec-
tric field. Such a system can be described more naturally in classical terms.
Cavity quantum optics deals with the coupling and hence the entanglement
of the internal states of individual Rydberg atoms with a specific mode of
the electromagnetic field.

For all these systems, coupling terms in the overall Hamiltonian will de-
stroy the product form of an initially decoupled quantum state, or classical
distribution. We should bear in mind three basic differences between classical
and quantum systems: (i) the nature of the initial state; (ii) the nature of the
evolution and (iii) the effect of experiments. As we have seen, the last is the
most radical difference, which, indeed, gives rise to the concept of entangle-
ment. Our objective here is to cast the quantum mechanical description of
(i) and (ii) in the most classical terms possible, so as to highlight the truly
innovative elements of the quantum theory when (iii) is considered.

A fundamental difference between the quantum and classical descriptions
should be discussed before proceeding: The analogy between the evolution of
classical probability distributions and quantum states is somewhat deceptive
in as much as the latter determine only probability amplitudes that can be
complex and interfere with each other. To arrive at a closer analogue of prob-
abilities, we should, in some sense, square the quantum states. The correct
procedure is to define density operators, or their phase space representation,
Wigner functions, to be studied in Sect. 4.6. However, their evolution is non-
classical, unless the Hamiltonian is quadratic.

It will be only in the context of the density operator that it becomes mean-
ingful to distinguish between pure states and mixed states. Taking an average
over a set of probability distributions defines a new probability distribution.
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Likewise, if we superpose the corresponding quantum states, |ψj〉, we obtain
a new quantum pure state. But if we average over the corresponding pure
state density operators, ρj = |ψj〉〈ψj |, there results a mixed state. The latter
will be discussed in Sect.4.6.

Now it is important to bring out a special form of state superposition.
This is the Schmidt decomposition,

|ψ〉 =
∑

j

λj |ψ1〉j ⊗ |ψ2〉j , (4.18)

which exists for any bipartite state (see Sect. 2.3.1 or e.g., [6]). It must be
emphasised that both factor states in the above tensor products may them-
selves correspond to several degrees of freedom, but the result is only proved
if there are only two of them. The product states form a particular orthonor-
mal basis in which to describe the state, |ψ〉, so that the real, non-negative
coefficients, λj , satisfy

∑
j λj

2 = 1. The state is entangled, unless λj = δ1,j .
The Schmidt decomposition is often employed for the description of entangled
states in finite Hilbert spaces. In this case, the number of nonzero eigenvalues,
λj , is a relevant quantifier of entanglement, known as the Schmidt number .
For infinite-dimensional Hilbert spaces, there may be an infinite number of
nonzero Schmidt coefficients.

4.4 Semiclassical Quantum States

Consider a momentum eigenstate |p′〉 for L = 1. In the momentum represen-
tation, this is just

〈p|p′〉 = δ(p′ − p) , (4.19)

which is not in a good form for semiclassical extrapolation. For this purpose,
it is better to use the complementary representation,

〈q|p′〉 = exp
(
iqp′

�

)
= exp

(
i
Sp′(q)

�

)
. (4.20)

The phase in this expression can be interpreted as the area between the
classical curve (the straight line p′ = p) and the q-axis. There is also an
arbitrary constant phase, which is established by the choice of the initial
point for the integral,

S(q) =
∫ q

q0

p(q) dq . (4.21)

Consider now a general observable, K(p̂, q̂). Its eigenstates correspond
classically to curves, γ, in phase space: K(p, q) = k. These may be viewed
locally as (possibly multivalued) functions, pj(q). Then the simplest semi-
classical approximation is
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〈q|k〉 =
∑

j

Aj(q) exp
[
i

(
Sj(q)

�
+ νj

)]
, (4.22)

see e.g., [18]. The phases, Sj(q), are again obtained from (4.21). The extra
constant phases, νj , are known as Maslov indices [18–20], but they will not
be discussed here. The amplitudes, Aj(q), are defined purely in terms of the
classical structure. They are finite wherever the vertical line, q = constant,
intersects the classical curve transversely. Where this vertical line is tan-
gent to the classical curve, such as qc in Fig. 4.2, the amplitude diverges.
These points where the semiclassical approximation breaks down are known
as caustics. The different branches of the function pj(q) are connected at
caustic points.

In the case of bound eigenstates of K̂, the curves γ are closed. Then the
eigenvalues are approximately obtained by the Bohr–Sommerfeld quantiza-
tion condition, ∮

γ

p dq = (n+
1
2
)� . (4.23)

The quality of the semiclassical approximation for both the states themselves
and their eigenvalues improves for large quantum numbers n. Ground states,
including that of the harmonic oscillator, are badly described by these ap-
proximations.

Even for large n, a closed curve, γ, must inevitably have at least a pair
of caustics. The way around this is to switch to the p-representation. Then
the vertical tangent at the caustic position, qc, shown in Fig. 4.2, would
correspond to the state 〈p|qc〉, which is in a nice semiclassical form. This
means that the local branch of the multivalued function q(p) gives rise to a
semiclassical approximation that is a superposition of terms of the form

Fig. 4.2. The caustic of the semiclassical approximation to 〈q|k〉 lies in the neigh-
bourhood of the point qc, where the tangent to the classical curve is vertical. The
projection of this region onto the p-axis is nonsingular, leading to a good semiclas-
sical approximation for 〈p|k〉
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〈p|k〉 = B(p) exp
[
i

(
S(p)

�
+ μ

)]
. (4.24)

This allows us to define the correct semiclassical approximation in the q-
representation through the caustic region by the Fourier transform

〈q|k〉 =
1

(2π�)1/2

∫
dp 〈p|k〉 exp

(
iqp

�

)
, (4.25)

which leads to a more refined approximation in terms of Airy functions in-
stead of exponentials. This is usually referred to as the Maslov method of
dealing with caustics [20] (also discussed in [18]).

Let us now consider a product state for L > 1. Then,

〈q|p′〉 = exp
(
iq1p

′
1

�

)
. . . exp

(
iqLp

′
L

�

)
= exp

(
iq · p′

�

)
, (4.26)

and we can generalize the definition of action,

S(q) =
∫ q

q0

p(q) · dq . (4.27)

This does not depend on the choice of path between q0 and q because p′(q)
is a constant in this simple case. Hence, this function defines a Lagrangian
surface, i.e., a surface such that

∮
p · dq = 0 , (4.28)

for any (reducible) circuit [12].
In general, the product state will involve arbitrary eigenstates of L ob-

servables, K̂ = K̂1K̂2 . . . K̂L, each in its own Hilbert space:

〈q|k〉 = 〈q1|k1〉 . . . 〈qL|kL〉 . (4.29)

The wave function will be a superposition of terms with the form

〈q|k〉 =
∏

l

Al(ql) exp
[
i

�
(S1(q1) + . . .+ SL(qL))

]
, (4.30)

one term for each branch of the functions, pl(ql).
Defining again S(q) as the above phase, it is seen to be independent of

the order in which we progress along each segment (q0l, ql), while keeping the
other integration variables constant: The definition (4.21), now reinterpreted
as a path integral, is independent of the path on the surface. Therefore, this
more general surface, K(p, q) = k, is also Lagrangian.

If the surface is the product of L-quantized circles (closed curves), it will
be an L-torus, τ . Each of the L irreducible circuits, γl, must then satisfy the
Bohr–Sommerfeld conditions,
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∮

γl

pl · dql = (nl +
1
2
)�, (4.31)

or some suitable generalization (see e.g., [18]). Notice that the line integral
here used is not restricted to plane sections of τ because all topologically
equivalent circuits on a Lagrangian surface must have the same action.

Let us now evolve the product state semiclassically. The basic result,
due to van Vleck [21], can be reinterpreted as the statement that classical
and quantum evolutions commute. In other words, we can evolve classically
each curve, γl, if there are no cross terms in the Hamiltonian, so that the
different degrees of freedom are decoupled. Each evolved observable then
corresponds to Kl(xl, t) = Kl(xl(xl0, t), 0) and we approximately reconstruct
the classically evolved state from the evolved torus, τl(t), which is the product
of the γl(t) : Kl(xl, t) = kl.

Notice that this classical evolution of products of curves fits into the
general view concerning the evolution of product probability distributions
in the previous section, by merely choosing fl(t;xl) = δ(Kl(xl, t) = kl) and
running time backwards. The important distinction between classical and
semiclassical evolution is that the latter contains interferences between the
different branches of the evolving classical curve. Each representation exhibits
these interferences in a different way.

Just as cross terms containing products of the different variables in the
Hamiltonian destroy the product form of a classical probability distribution,
the classically evolved L-D surface corresponding to an original product state
also ceases to be a product. However, the smoothness of the evolution implies
that the topology of the surface must be preserved (be it plane, torus, or,
in between cylindrical). Furthermore, the classical evolution, x0 → xt, is
a canonical transformation, and hence all reducible circuits on the evolved
surface have zero action, i.e., τt still has the Lagrangian property, which allows
to define the path-independent action S(q), and the irreducible circuits of τt
still satisfy the same Bohr–Sommerfeld conditions to first order in �.

Let us investigate further the case of two degrees of freedom. The separa-
ble torus, τ = γ1⊗γ2, can be pictured through the separate γ1 and γ2 curves.
These coincide with sections of the 2-D torus by alternative 3-D planes (the
normal case for Poincare sections, see e.g., [18, 19]). The γ2 curve does not de-
pend on the choice of the q1 = constant section. The separable torus projects
as a rectangle onto position space (q1, q2), as shown in Fig. 4.3. Within this
rectangle, there are four different branches of the torus, which project onto
each position, q, corresponding to the combinations of the two branches of
each circle. The caustics at the side of the rectangle are double fold lines.

After a general canonical evolution, the sections of τ are no longer equal
for different choices of q1 = constant (or q2 = constant), though all the
sections have the same area, S1 (or S2). In some cases (to do with time
invariance of the Hamiltonian), the projection onto the q-plane will merely
distort the rectangle, which will still have finite-angled corners connecting
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Fig. 4.3. Each point within the rectangular caustic of a two-dimensional product
torus is the image of four phase space points under p-projection

double-fold lines. But in general, these corners, hyperbolic umbilic points,
will unfold in the generic form specified by catastrophe theory, as shown in
Fig. 4.4. There are four possibilities for the topology of the unfolding of the
rectangle, shown in Fig. 4.5. For L > 2, the projection of the L-torus onto
the L-D q-plane will be a solid hypercube that will be distorted, or unfolded
by the motion generated by a coupling Hamiltonian. (These geometries are
reviewed in [18], but are more thoroughly discussed in [22].)

The representations of quantum states in terms of orthogonal position, or,
alternatively, momentum eigenstates are the best that we can do because of
Heisenberg’s uncertainty principle. Semiclassically, this corresponds to view-
ing a Lagrangian surface through a set of Lagrangian planes that foliate

Fig. 4.4. Catastrophe theory establishes the generic form for the unfolding of the
double-fold caustic at each corner of the projection of a product torus as it evolves
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Fig. 4.5. The full topology of the full fold lines is not determined by catastrophe
theory: Each of the above forms corresponds to a different symplectic evolution
from an initial product torus

phase space. We switch from the q-representation to the p-representation
by means of a Fourier transform of 〈q|ψ〉. This corresponds classically to
taking the Legendre transform of S(q) [12]. For L > 1, we may take the
Fourier transform for a subset of the degrees of freedom. This corresponds
to using a classical description in terms of the alternative Lagrangian planes
(p1, . . . , pl, ql+1, . . . , ql).

One way to achieve a full phase space description is to use the basis of
coherent states [8, 23–26], labeled by the phase space vector, η = (ηp, ηq),

〈q|η〉 =
( ω

π�

)1/4

exp
[
− ω

2�
(q − ηq)2 + i

ηp

�
(q − ηq

2
)
]
. (4.32)

Even though the coherent state basis is overcomplete, the exact decomposi-
tion,

|ψ〉 =
1
π

∫
dη|η〉〈η|ψ〉 , (4.33)

is unique. The coherent states are phase space translations of the ground
state of the harmonic oscillator (with unit mass):

〈q|0〉 =
( ω

π�

)1/4

exp
(
− ω

2�
q2
)
. (4.34)

These result from the action of the translation operator :

T̂η = exp
[
i

�
(ηp · q̂ − ηq · p̂)

]
= exp

(
i

�
η ∧ x̂

)
, (4.35)

using the skew product (4.10). If either ηp = 0 or ηq = 0, we obtain the usual
translation operators for momenta, or positions, respectively. The arbitrary
phase due to noncommutation of p̂ and q̂ is here chosen in the most symmetric
way, using the Baker–Hausdorff relation [27].

In quantum optics, it is customary to switch to the basis of creation and
annihilation operators (q̂± ip̂)/

√
2�. In this context, the translation operator
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(4.35) depends on the complex chords (ηp ± iηq)/
√

2� and is called the dis-
placement operator [23]. The semiclassical limit for a complex phase space is
not as transparent as the real theory treated here. However, it is quite feasible
to effect phase space translations in an experimental optical context [28].

The coherent state representation is not orthogonal and is overcomplete.
The alternative, to be explored in the next section, is to work directly with
operators: We represent operators in orthogonal operator bases in analogy to
the way that quantum states are commonly decomposed. This allows us to
work directly with the translation operators, without having to apply them
to the ground state of the harmonic oscillator.

4.5 Operator Representations and Double Phase Space

The linear operators, Â, that act on the quantum Hilbert space form a vector
space of their own: |A〉〉. Defining the Hilbert–Schmidt product ,

〈〈A|B〉〉 = tr Â†B̂ , (4.36)

we find that the dyadic operators |Q〉〉 = |q−〉〈q+| form a complete basis, i.e.,

〈〈Q|A〉〉 = 〈q+|Â|q−〉 = tr |q−〉〈q+|Â , (4.37)

provides a complete representation of the operator Â. Here, Â† is the adjoint
of Â. One should note the similarity between this dyadic basis, |q−〉〈q+|, in
the case of L = 1 with the basis of product states, |q1〉⊗|q2〉. The substitution
of a bra by a ket in the former will in most cases imply no more than complex
conjugation.

Thus, we may relate the vector space of quantum operators to a double
Hilbert space with respect to that of quantum states. Since we have explored
the correspondence of the state-Hilbert space with classical phase space, it
is now natural to relate the double Hilbert space to a double phase space :
X = x− × x+ (see e.g., [29]). The operator |Q〉〉 should then correspond to
the Lagrangian plane Q = constant in the double phase space. This does
hold, within a minor adaptation, analogous to the use of the adjoint operator
in the definition of the Hilbert–Schmidt product. That is, we should define
Q = (q−, q+), but P = (−p−, p+) as coordinates of the double phase space
X = (P,Q).

A good reason for this is that then we include among the set of Lagrangian
surfaces in double phase space all the canonical transformations in single
phase space, x− → x+ = C(x−). This also transports closed curves, γ− → γ+,
so that we may rewrite the definition of a canonical transformation as

∮

Γ

P · dQ = 0 , (4.38)
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where Γ = (γ−, γ+). Thus, we may consider γ± as projections of the curve
Γ defined on the (2L)-dimensional surface, ΛC , which specifies the canonical
transformation, within the (4L)-dimensional double phase space, X = (P,Q).

It is worthwhile to consider the richness of structures in double phase
space. On the one hand, a canonical transformation defines a Lagrangian
surface as x+(x−), a one-to-one function. On the other hand, the product of
a Lagrangian surface, λ− in x− with another surface λ+ in x+, Λ = λ−⊗λ+,
is also Lagrangian in double phase space, but projects singularly onto either
of the factor spaces. In the case that both surfaces are tori, we obtain a double
phase space torus, τ = τ−⊗τ+, as if we had doubled the number of degrees of
freedom. (All Lagrangian surfaces will hereon be labeled τ , even when they
are not necessarily a torus; in the case that L = 1, τ is just a closed curve, γ.)
If L = 1, it will be a 2-D product torus, with the only difference that p− →
−p− in the present construction. If each Lagrangian surface corresponds to
a state, i.e., |ψ−〉 and |ψ+〉, then we represent |Ψ〉〉 = |ψ+〉〈ψ−| in the |Q〉〉
representation as

〈〈Q|Ψ〉〉 = 〈q+|ψ+〉〈ψ−|q−〉 . (4.39)

Therefore, the semiclassical approximation is just a superposition of terms of
the form

〈〈Q|Ψ〉〉 = AJ (Q) exp[iSJ(Q)/�] (4.40)

with
AJ (Q) = Aj−(q−)∗ Aj+(q+) (4.41)

and

SJ(Q) =
∮ Q

0

PJ(Q′) · dQ′ . (4.42)

Again this is in strict analogy to the construction of semiclassical product
states of higher degrees of freedom. Note that the projection of the double
Lagrangian torus onto P or Q is just the rectangle discussed previously for
product states, whereas the projections onto the planes, x− and x+, are
specially singular.

The semiclassical approximation for a unitary operator, Û , that corre-
sponds to a canonical transformation, C : x− → x+, has exactly the same
form, i.e., a superposition

〈〈Q|U〉〉 = 〈q+|Û |q−〉 = UJ(Q) exp[iSJ (Q)/�] , (4.43)

for each branch of the function PJ(Q) defined by the Lagrangian surface in
double phase space. Note that the situation with respect to projection sin-
gularities is now reversed, as compared to |Ψ〉〉. The fact that the projections
of the Lagrangian surface, ΛC , onto either x−, or x+ are both nonsingular
in no way guarantees that the projections onto the P or the Q Lagrangian
planes will be likewise free of caustics.

Conversely, any function, S(Q), is, at least locally, the generating function
of a canonical transformation through the implicit equations:



4 Entanglement in Phase Space 177

∂S

∂Q
= P (Q) , or

∂S

∂q+
= p+ ,

∂S

∂q− = −p− . (4.44)

Here we recognize the standard generating functions S(q−, q+) in Goldstein
[16]. If S(Q) is quadratic, then these implicit equations will be linear, so
that the explicit transformation will result from a matrix inversion (if it
is nonsingular). There will be a single branch in S(Q) for such a symplectic
transformation, and it turns out that the semiclassical approximation is exact
in this case.

The well-known alternatives to these generating functions are usually ob-
tained by Legendre transforms. However, we can consider the π/2 rotation,
q+ → p+, p+ → −q+, times the identity in x−, as an example of canonical
transformation in double phase space: X → X ′. Then Q′ = (q−, p+) is also
a good Lagrangian plane that can be used as the new coordinate plane for
the description of ΛC . In the new coordinates, the implicit equations for the
canonical transformation are just

∂S′

∂Q′ = P ′(Q′) , or
∂S′

∂p+
= −q+ ,

∂S′

∂q− = −p− . (4.45)

The correspondence with a semiclassical state,

〈〈Q′|Ψ〉〉 = A′
J (Q′) exp[iS′

J (Q′)/�] , (4.46)

will be exact in the case of a symplectic transformation. Note that |Q′〉〉 is
a first example of an operator basis that corresponds to a set of parallel
Lagrangian planes in double phase space, which, nonetheless, have internal
coordinates that can be identified with a phase space on its own.

The crucial step is now to explore other kinds of canonical transformations
in double phase space [30]. In particular,

Q′ = x =
x+ + x−

2
, P ′ = y = J(x+ − x−) = Jξ . (4.47)

Here, the J symplectic matrix in single phase space is essential to canonize
what would be just a π/4 rotation. It accounts for the change of sign in the
p− coordinate. We will here have to bare the discomfort that the canonical
coordinate in double phase space is y, but the geometrically meaningful vari-
able in single phase space is ξ, the trajectory chord , in the case of continuous
evolution. The coordinate x will be referred to as the centre.

If we consider the horizontal Lagrangian planes y = constant, each is
identified with a uniform classical translation. Thus, we have departed from
coordinate planes corresponding to dyadic operators to those planes in dou-
ble phase that describe canonical transformations and hence correspond to
unitary transformations. In this case, x− → x+ = x− + ξ are the group
of phase space translations, which include the the identity, i.e., the identity
plane is defined as ξ = 0.
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On the other hand, the vertical plane, x = 0, defines the canonical reflec-
tion through the origin, x− → x+ = −x− (or inversion), since all the chords
for this transformation are centred on the origin. Other vertical planes spec-
ify reflections through other points, x− → x+ = −(x− − 2x). The reflections
do not form a group on their own (no identity), but together with the trans-
lations they form the affine group of geometry [31].

Since there is an exact correspondence between linear canonical transfor-
mations and unitary transformations, each plane y = constant corresponds
precisely to the translation operator, T̂ξ, previously defined as (4.35). Notice
that this was written with a phase that is a skew product involving ξ, but we
could also use T̂ξ = exp(iy · x̂/�). In terms of the previous dyadic |Q〉〉 basis,
this is expressed as

T̂ξ =
∫

dq
∣∣∣∣q +

ξq
2

〉〈
q− ξq

2

∣∣∣∣ e
iξp·q/� , (4.48)

a symmetrized Fourier transform (see e.g., [32]).
Just as a π/2 rotation in single phase space, q → p and p → −q, cor-

responds to a Fourier transform, so the transformation between horizontal
and vertical planes in double phase space is also achieved by a full Fourier
transform (except for an annoying factor of 2L):

2LR̂x =
∫

dξ
(2π�)L

T̂ξ exp(
i

�
x ∧ ξ) . (4.49)

In terms of the dyadic |Q〉〉 basis, we have

2LR̂x =
∫

dξq

∣∣
∣∣q +

ξq
2

〉〈
q− ξq

2

∣∣
∣∣ e

ip·ξq/� , (4.50)

the complementary symmetrized Fourier transform to (4.48).
We are now free to switch from the usual (position) dyadic basis to the

unitary operator basis, |y〉〉 = T̂ξ:

〈〈y|A〉〉 = tr T̂−ξÂ = A(ξ) , (4.51)

where we use T̂−ξ = T̂ †
ξ . A(ξ) is the chord representation of the operator Â

(also referred to as the chord symbol). Notice that the chord basis includes
the identity operator, Î = |I〉〉 = |y = 0〉〉. To verify that (4.51) is indeed
the expansion coefficient for an arbitrary operator in the basis of translation
chords, we use

tr T̂ξ = (2π�)Lδ(ξ) = 〈〈y|I〉〉 (4.52)

(note the double phase space analogy with 〈p′|(p = 0)〉 = δ(p′) ), as well as
the quantum version of the group of translations:

T̂ξ2 T̂ξ1 = T̂ξ1+ξ2 exp [
−i
2�
ξ1 ∧ ξ2] (4.53)
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(see e.g., [33]). Then, the expansion,

Â =
∫

dξ
(2π�)L

A(ξ) T̂ξ , (4.54)

leads to

tr(T̂−ξÂ) = tr
∫

dξ′

(2π�)L
A(ξ′)T̂−ξT̂ξ′

=
∫

dξ′

(2π�)L
A(ξ′) exp

[ i
2�

ξ′ ∧ ξ
]
tr T̂ξ′−ξ

= A(ξ) .

(4.55)

The chord representation is thus a second example of a representation of
operators in terms of an operator basis that can be identified uniquely to a
phase space. Indeed, each chord corresponds to a Lagrangian surface in double
phase space and hence a particular uniform translation in single phase space.

The next representation will be based on phase space reflections, R̂x.
But first, it is worthwhile to examine some characteristics of these operators.
Unlike the translations, they do not form a group on their own, though they
combine with the latter to form the affine group. The products are [33]

R̂xT̂ξ = exp[− i

�
x ∧ ξ] R̂x−ξ/2 , (4.56)

T̂ξR̂x = exp[− i

�
x ∧ ξ] R̂x+ξ/2 (4.57)

and
R̂x2R̂x1 = exp[

2i
�

x1 ∧ x2] T̂2(x2−x1) . (4.58)

Except for the phases, these are just the classical relations. The last one is
specially interesting. Note that R̂2

x = Î, the identity, hence the (degenerate)
eigenvalues of R̂x must be either +1, or −1. Therefore, these operators are
Hermitian, as well as unitary.

Are they true observables? Consider the effect of R̂0 on the eigenstates of
the harmonic oscillator. Taking q → −q and p→ −p, leads to a change of sign
for all the odd states, while preserving the even states. In other words, the
latter are just the (+1)-eigenstates, while the odd states are (−1)-eigenstates.
Though it is hard to imagine measuring the parity of a particle, we saw in
Sect. 4.2 that the parity decomposition of even a classical wave can certainly
be effected. Measurements of the eigenvalues of this non-mechanical observ-
able are currently performed for single photons in optical cavities [34]. It is
true that these measurements are performed on a mode of the electromag-
netic field rather than a particle, but it only makes sense to discuss the parity
within a specific mode if it is quantized.
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Reflection operators are very strange observables as far as phase space
correspondence is concerned. It was discussed in Sect. 4.4 that usual ob-
servables correspond to smooth phase space functions and their eigenvalues
correspond to level curves if L = 1. This is just not the case of reflection
operators with their infinitely degenerate ±1 eigenvalues. In their dual role
as both unitary and Hermitian (observable) operators, reflections are almost
schizophrenic: They are perfectly ordinary unitary operators, corresponding
to Lagrangian planes in double phase space, but they do not correspond to
any smooth classical function in phase space, as expected of a mechanical
observable.

This should furnish sufficient motivation to investigate the representation
of arbitrary operators in terms of reflection centres. The assumption that

Â =
∫

dxA(x) 2LR̂x (4.59)

leads to

〈〈x|A〉〉 = tr (2LR̂x)Â = tr
∫

dx′

(2π�)L
A(x′)(2LR̂x)(2LR̂x′) = A(x) . (4.60)

This is the Weyl representation of the operator Â (also known as the Weyl
symbol). Once again we use half the coordinates of double phase space, within
a Lagrangian plane that is a phase space on its own, to describe a quantum op-
erator. This perception that we are really dealing with different phase spaces
for each operator representation was clearly stated in the excellent review by
Balazs and Jennings [35]. What was lacking was merely the identification of
each of these different phase spaces with a specific foliation of Lagrangian
planes in double phase space.

As far as unitary operators, Û , are concerned, the semiclassical limit of
the representations, either in terms of centres or chords, has exactly the same
form as for any other Lagrangian basis. For instance, the Weyl symbol will
be a superposition of terms, such as

U(x) = A(x) exp[iS(x)/�] , (4.61)

in terms of the centre action, defined as

S(x) =
∫ x

0

y(x′) · dx′ =
∫ x

0

ξ(x′) ∧ dx′ . (4.62)

For symplectic transformations, the Lagrangian surface is a plane, and so
there is only a single branch of the action function S(x), which is quadratic.
Then (4.61) is an exact representation of the corresponding quantum meta-
plectic transformation. However, in the general nonlinear case, there may be
caustics in the projection of the Lagrangian y(x′) surface onto the x-plane.
Recall that this is just the plane that defines the identity operator, Î (corre-
sponding to y = 0, or S = 0).
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For the canonical transformation generated by a Hamiltonian, H(x), it
turns out that the generating function has the limit [33]

Sε(x, t = ε) → −εH(x) +O(ε3) . (4.63)

There are no caustics for small times in the centre representation, since the
corresponding Lagrangian surface is nearly horizontal.

The smooth real Hamiltonian itself can be equated to the Weyl sym-
bol for the corresponding operator, Ĥ, within semiclassically small ordering
terms. This is the case of the Weyl representation for any observable that
corresponds classically to a smooth classical function of the points in phase
space [17]. Since we can always consider classical observables as infinitesimal
generators of motion through Hamilton’s equations, it is appropriate to pic-
ture them as functions on the y = 0 plane, so that the Hamiltonian vectors
form a field on this plane that indicates which way it will evolve. In con-
trast, the chord symbol for these smooth mechanical observables is not at
all smooth. This is because the chord and centre symbols are related to each
other through the Fourier transform,

A(ξ) =
1

(2π�)L

∫
dx exp

(
− i

�
ξ ∧ x

)
A(x) , (4.64)

just as the translation and reflection operators themselves in (4.49). This
Fourier transform takes the symbol for the identity, I(x) = 1, into I(ξ) = δ(ξ)
and a Taylor series in x into a series of derivatives of δ-functions. However, we
shall see in the next section that the chord representation of density operators
has very useful properties.

It is fitting to consider here another feature which distinguishes the re-
flection operators from mechanical observables. Far from being represented
by a smooth phase space function, their centre representation is just

Rx(x′) = 2−Lδ(x′ − x) . (4.65)

These singular functions cannot be interpreted as corresponding to classical
states (i.e., individual phase space points) because the R̂x have the eigenvalue
−1, so they are not density operators.

Probably the first to remark on the general structure of translations and
reflections underlying the Weyl and the chord representations were Gross-
mann and Huguenin [36]. There exists an exact correspondence, between
these operators of the affine quantum group, together with the unitary op-
erators of the metaplectic group, with the classical transformations of the
inhomogeneous symplectic group [17]. In other words, all linear canonical
transformations, including reflections and translations, are exactly matched
by quantum unitary transformations. Thus, the unitary transformation, ÛC,
corresponding to x→ x′ = Cx, where C is a symplectic matrix, takes

R̂x → R̂′
x = Û†

CR̂xÛC = R̂x′ and T̂ξ → T̂ ′
ξ = Û†

CT̂ξÛC = T̂ξ′ . (4.66)
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This has the consequence that both the centre and the chord representa-
tions are invariant with respect to metaplectic transformations, because the
transformed operator Â→ Â′ is represented by

A′(x) = tr ÛCÂ Û
†
CR̂x = tr Â Û†

CR̂xÛC = tr Â R̂′
x = A(x′) (4.67)

and, likewise, A′(ξ) = A(ξ′).
This section is concluded with some general formulae concerning these

representations. For the trace of an operator, we have the alternative forms:

tr Â = tr Î Â = 〈〈T̂ξ=0|A〉〉 = A(ξ = 0) =
1

(2π�)L

∫
dxA(x) . (4.68)

The adjoint operator, Â†, is represented by

A†(x) = [A(x)]∗ , or A†(ξ) = [A(−ξ)]∗ , (4.69)

where ∗ denotes complex conjugation. Thus, if Â is Hermitian, A(x) is real,
though A(ξ) may well be complex. The Weyl or chord symbols for products
of operators are not at all obvious (see e.g., [33]), but

tr Â2Â1 =
∫

dξ
(2π�)L

A2(ξ)A1(−ξ) =
∫

dx
(2π�)L

A2(x)A1(x) . (4.70)

4.6 The Wigner Function and the Chord Function

It is customary to alter the normalization of the centre and the chord symbols
for the density operator, ρ̂, so as to define

W (x) =
ρ(x)

(2π�)L
and χ(ξ) =

ρ(ξ)
(2π�)L

, (4.71)

respectively the Wigner function and the chord function. Combining with
the general definition of the Weyl representation and the expression for the
reflection operator, we obtain the original definition of W (x), proposed by
Wigner [37]. In both cases of (4.71), the representation of the trace of a
product leads to the expectation of any observable, Â, as

〈Â〉 =
∫

dxW (x)A(x) =
∫

dξ χ(−ξ)A(ξ) . (4.72)

The first integral is more interesting because A(x) is at least semiclassically
close to the classical variable, which tempts us to identify the Wigner function
with a nearly classical probability distribution. However, we will see below
that W (x), though real and normalized so



4 Entanglement in Phase Space 183

∫
dxW (x) = 1 , (4.73)

may well take on negative values.
The chord function behaves like a classical characteristic function, in as

much as the moments are

〈qn〉 = tr q̂n ρ̂ = (i�)n ∂n

∂ξn
p

(2π�)L χ(ξ)
∣∣∣
ξ=0

(4.74)

and
〈pn〉 = tr p̂n ρ̂ = (−i�)n ∂n

∂ξn
q

(2π�)L χ(ξ)
∣∣∣
ξ=0

. (4.75)

Taking the zeroth moment, we obtain the normalization,

1 = (2π�)L χ(0) , (4.76)

because tr ρ̂ = ρ(ξ = 0) = 1.
Shifting the phase space origin to 〈x〉 = (〈p〉, 〈q〉), we can define the

Schrödinger covariance matrix [38] just as its classical counterpart (4.7),
with δp2 = 〈p̂2〉, δq2 = 〈q̂2〉 and (δpq)2 = 〈(p̂q̂ + q̂p̂)/2〉. It is then obvious
that the expansion of the chord function at the origin is given by a quadratic
form

χ(ξ) = (2π�)−L − ξK ξ + . . . , (4.77)

and we can interpret the uncertainty ,

ΔK =
√

detK , (4.78)

as proportional to the volume of the ellipsoid: ξK ξ = 1. Evidently, this
volume is invariant with respect to symplectic transformations, so that ΔK

is a symplectically invariant measure of the uncertainty of the state.
The projection of the Wigner function

∫
dp W (p,q) = Pr(q) (4.79)

is a true probability for position measurements [37]. Furthermore, the invari-
ance of the chord and the centre representations with respect to symplectic
transformations then guarantees that the projection of the Wigner function
along any set of Lagrangian planes p′ supplies the probability distribution
for the conjugate variable q′. In particular, the probability Pr(p) results from
the projection of W (p,q) with respect to q. All these planes are Lagrangian,
so it follows that the projection of the Wigner function onto any Lagrangian
plane in phase space is a probability distribution for the corresponding vari-
able. It may appear somewhat contrived, as far as measurement is concerned,
to consider general linear combinations of position and momentum. However,
it should be recalled that these observables will evolve from an initial position
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for the motion driven by any quadratic Hamiltonian, even including free mo-
tion through a laboratory. The reconstruction of the Wigner function from a
suitable set of these marginal distributions is known as quantum tomography.
This is achieved through the Radon transform (see e.g., [39]).

It is equally remarkable, but less well known, that the characteristic func-
tion corresponding to the marginal probability distribution for positions is
obtained by merely taking a section of the chord function:

∫
dq Pr(q) exp

(
− i

�
ηq · q

)
= (2π�)L χ(0, ηq) . (4.80)

Since the chord function is also symplectically invariant, it follows that the
characteristic functions for all the probability distributions, which result from
Wigner projections onto Lagrangian planes, are equal to the corresponding
sections of the chord function.

So far, we have emphasised the seemingly classical aspects of the Wigner
function. However, it must be remembered that the Weyl representation is
defined in terms of a very anomalous observable, as far as classical correspon-
dence is concerned. In order to reveal the full quantum nature of the Wigner
function, let us divide the Hilbert space of quantum states into even and odd
subspaces for a given reflection operator, R̂x. This is achieved through the
projection operator introduced by Grossmann [40] and Royer [41],

P̂x
± =

1
2

(
1± R̂x

)
, (4.81)

so that, in its turn, we can express each reflection operator as the superposi-
tion of this pair of projections onto the even and the odd subspaces:

R̂x = P̂x
+ − P̂x

− . (4.82)

But
tr ρ̂ P̂x

± = Prx± (4.83)

is just the probability of measuring R̂x to have the eigenvalue ±1, so it follows
that [41]

W (x) =
1

(π�)L
[Prx+ − Prx−] =

1
(π�)L

[2Prx+ − 1] . (4.84)

We thus find that the Wigner function does not admit the interpretation as a
probability distribution in phase space because it can certainly be negative.
Even so, it is a simple linear function of a distribution of probabilities of
positive eigenvalues for all possible reflection measurements. Its maximum
possible value (π�)−L is attained for any point, x, such that P̂x

+ ρ̂ = ρ̂,
whereas the commutation of the density operator with P̂x

− specifies a phase
space point where W (x) = −(π�)−L.

Let us now investigate the effect of reflections and translations on a den-
sity operator. Evidently, the centre and chord representations are specially
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suitable for this purpose. In the case of a phase space translation by the
vector, η, i.e., ρ̂η = T̂η ρ̂ T̂−η, the respective Wigner and chord functions
become

Wη(x) = W (x− η) and χη(ξ) = eiη∧ξ/� χ(ξ) , (4.85)

which shows that, unlike the Wigner function, the chord function is not gen-
erally real. The sensitivity of a state to translations is described by the phase
space correlations of a given density operator, defined as [32]

C(ξ) = tr ρ̂ T̂ξ ρ̂ T̂
†
ξ

= (2π�)L

∫
dxW (x)W (x− ξ)

= (2π�)L

∫
dη eiη∧ξ/� |χ(η)|2 .

(4.86)

From the reciprocal relation that supplies the intensity of the chord function
as the Fourier transform of these correlations and the normalization condition
(4.76), we see that

∫
dξ C(ξ) = (2π�)3L|χ(η = 0)|2 = (2π�)L . (4.87)

So, even though these correlations are defined in terms of classical translations
in phase space, they are purely quantum and disappear in the classical limit.
However, if we fix � and adopt this constant as our phase space scale, then
we can picture C(ξ) as a classical-like phase space distribution for which the
characteristic function is just |χ(ξ)|2.

Specializing to the case of a pure state, ρ̂ = |ψ〉〈ψ|, we find that

〈ψ|T̂ξ|ψ〉 = (2π�)Lχ(−ξ) , (4.88)

so that the phase space correlations take the form [32]

C(ξ) = |〈ψ|T̂ξ|ψ〉|2 = (2π�)2L|χ(ξ)|2 . (4.89)

Thus, for instance, in the case that ξ = (0, ξq), the phase space correlations,
C(ξ), are just the usual spacial correlations inferred from neutron scattering
experiments. Nonetheless, we must be careful to distinguish between phase
space correlations and the correlations between the quantum measurements
of observables defined on the different components of a bipartite system, such
as the CHSH inequality. For a pure state, (4.89) is the square modulus of the
expectation for a translation, which is not a quantum observable. However,
(4.86) defines the phase space correlation in the same way as for a classical
distribution.

The chord function always assumes its maximum value 1/(2π�)L at the
origin. But also an average of overlaps cannot exceed one, so χ(0) is the
maximum even for mixed states. As for the correlations, we always have
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tr ρ̂2 = (2π�)L

∫
dx [W (x)]2 = (2π�)L

∫
dξ |χ(ξ)|2 = C(0) , (4.90)

being that tr ρ̂2 = 1 for pure states. But consider a mixture of orthogonal
states,

ρ̂ =
∑

j

Pr(n) |n〉〈n| , (4.91)

then the purity
C(0) =

∑

j

Pr(n)2 ≤ 1 . (4.92)

Another form in which this quantity appears is the linear entropy : 1 −
tr ρ̂2. This may be considered as a first-order expansion of the von Neumann
entropy :

S = −tr ρ̂ ln ρ̂ (4.93)

a quantum version of the classical Shannon entropy. In [32], the correlations
were normalized by the purity so as to be always unity at the origin, but it
is convenient to include this quantity as a special case of the correlations.

General invariance with respect to Fourier transformation characterizes
the correlation in the case of pure states. Indeed, inserting the above expres-
sion in the definition of the phase space correlation , we obtain [32]

C(ξ) =
∫

dη
(2π�)L

eiη∧ξ/� C(η) . (4.94)

This is a remarkable property of all pure states and is in no way restricted
by special symmetry properties that will be shown to relate certain Wigner
functions to their respective chord functions. An immediate consequence is
that oscillations of the phase space correlation of a pure state involving a large
displacement, ξ, are necessarily bound to small ripples on the scale, |ξ|−1,
in the direction, Jξ. Of course, these small-scale oscillations of the phase
space correlations, which have been attractively described as subplanckian
[42], show up in the pure state Wigner function because of (4.86).

The Fourier invariance condition (4.94) includes as a special case the more
familiar one obtained by tracing over the full pure state condition ρ̂ 2 = ρ̂. It
follows that the difference of both sides of (4.94) for each chord ξ generalizes
(4.92) as a measure of the degree of purity of a state. All the same, the loss
of the phase information in C(ξ), but contained in the chord function, would
seem to imply that these are necessary conditions, whereas the full sufficient
condition of purity is ρ̂ 2 = ρ̂, which is expressed in the chord representation
as [33]

∫
dη χ(η) χ(ξ − η) eiξ∧η/2� =

∫
dη χξ/2(η) χ(ξ − η) = χ(ξ) (4.95)
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with χξ/2(η) defined by (4.85).3 However, the particular condition C(0) = 1
is indeed a sufficient condition, because, for any mixture of pure states, ρ̂ =∑

n Pr(n)|ψn〉〈ψn|, we obtain

tr ρ̂2 = 1−
∑

n�=n′

Pr(n)Pr(n′)[1− |〈ψn|ψn′〉|2] . (4.96)

A single phase space point does not correspond to any pure state in Hilbert
space. The only pure states that are classical-like, i.e., have positive Wigner
functions, are either coherent states, or their image by a symplectic transfor-
mation [43, 44].

Let us now consider the effect of measuring a general phase space reflec-
tion, R̂x. The density operator, ρ̂, will be projected by P̂x

±, defined by (4.81),
onto either the even or odd subspace for this particular reflection:

ρ̂x± =
P̂x
± ρ̂ P̂x

±

tr ρ̂ P̂x
±

. (4.97)

The Weyl symbol for ρ̂ P̂x
± defines the symmetric Wigner function, W±

x (x′),
within a normalization factor, so that, using the group relations (4.56), (4.57)
and (4.58), we obtain [45]:

W±
x (x′) = (π�)−Ltr R̂x′ ρ̂x±

=
W (x′) +W (2x− x′)± ! 2(L+1) e2i x′∧x/� χ(2(x′ − x))

2 [1± (π�)L W (x)]
,

(4.98)

where ! denotes the real part of a number. It follows that the Wigner function
and the chord function for a reflection symmetric density operator are trivially
related. Shifting the origin of phase space to the symmetry point leads to [32]

W±
0 (x) = ± 2Lχ±

0 (−2x) . (4.99)

Thus, all pure state Wigner functions for density operators that commute
with a reflection symmetry attain the largest amplitude at the symmetry
point, but this will be negative in the case of odd symmetry.

Let us consider some standard examples of Wigner and chord functions.
All the following cases are related to eigenstates of a harmonic oscillator with
one degree of freedom and unit mass.

(i) Coherent states: the Wigner function is just a Gaussian centred on η,

Wη(x) =
1
π�

exp
[
−ω

�
(q− ηq)

2 − 1
�ω

(p− ηp)
2

]
ω=1−→ 1

π�
e−(x−η)2/� ,

(4.100)
3 For distributions Pr(n) over eigenstates |n〉 of an observable with discrete spec-

trum, the condition Pr(n)2 = Pr(n) also singles out a pure state, Pr(n) = δn,m,
but this condition is not generalizable to a continuous spectrum.
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whereas

χη(ξ) =
1

2π�
exp

(
iη ∧ ξ

�

)
exp

[

−ω
�

(
ξq
2

)2

− 1
�ω

(
ξp
2

)2
]

ω=1−→ 1
2π�

eiη∧ξ/�e−ξ2/4� .

(4.101)

So, any translation of the coherent state merely alters the phase of the Gaus-
sian chord function that sits on the origin. The coherent states, or more
generally all equivalent Gaussian states obtained from them by symplectic
transformations, are the only examples of pure states for which the Wigner
function is nowhere negative [43]. This is one of the reasons why these are
sometimes considered to be the most classical of pure quantum states. Since
the projection of a Gaussian is also a Gaussian, the measurement of position,
or any other Lagrangian phase space coordinate, does not display interference
fringes. The fact that the uncertainty, Δ = δpδq = �, is minimal allows us to
interpret them as quantum phase space points.

(ii) A superposition of a pair of coherent states |η〉 ± | − η〉 is sometimes
known as a Schrödinger cat state. Its Wigner function is4

W±(x) =
1

2π� (1± e−η2/�)

×
[
e−(x−η)2/� + e−(x+η)2/� ± 2e−x2/� cos

(
2
�
x ∧ η

)]
. (4.102)

It consists of two classical Gaussians centred on ±η and an interference pat-
tern with a Gaussian envelope centred on their midpoint. The frequency of
this oscillation increases with the separation |2η|. In Fig. 4.6, the displace-
ments ±η have been chosen as (±3,±3). The phase of the pair of coherent
states merely shifts the phase of the interference fringes, so that the midpoint
is an absolute maximum for W+(x) and an absolute minimum for W−(x).
It might be supposed that for small η → 0, we would have W+(x) > 0 for
all x, but it is easy to verify that there are very shallow negative regions far
removed from the classical superposed Gaussians, in agreement with [43, 44].
The interference pattern of the Wigner function does not survive the projec-
tion orthogonal to η: In this direction, the interference disappears to produce
a purely classical pattern. Conversely, the projection along η is marked by
interference fringes.

For the chord function,

χ±(ξ) =
1

4π� (1± e−η2/�)

×
[
e−(ξ/2−η)2/� + e−(ξ/2+η)2/� ± 2e−ξ2/4� cos

(
1
�
ξ ∧ η

)]
, (4.103)

4 Here and below we set ω = 1.
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Fig. 4.6. The Wigner function for the Schrödinger cat state displays a pair of
classical Gaussians, one for each coherent state, and a third Gaussian modulated
by interference fringes halfway between them. The chord function is a mere rescaling
of the Wigner function if the midpoint lies on the origin

this same configuration has to be reinterpreted. Now the local phase space
correlations of the individual coherent states, as in (i), are placed in the neigh-
bourhood of the origin, where they interfere, while their cross-correlation
generates new Gaussians centred on the separation vectors ±2η. The general
case of coherent states |η1〉 and |η2〉 merely leads to Gaussians centred on
±(η1 − η2) with addition of the phase factor exp[i(η1 + η2) ∧ ξ/2�].

Recalling that the phase space correlations of a pure state are just the
square modulus of the chord function, we can immediately verify the general
relation between large- and small-scale structures in the case of Schrödinger
cat states. Indeed, the spacial frequency of the oscillations of the chord func-
tion increases directly with the separation of the pair of coherent states.

The particular superpositions of coherent states, |+〉 and |−〉, are respec-
tively even and odd eigenstates of the parity operator R̂0, i.e., reflection about
the origin. Therefore, they are the two possible states that could be produced
by a parity measurement effected on the single coherent state |η〉. Thus, the
parity measurement would generate a sizable probability of finding a particle
near x = −η, even though this was most unlikely before the measurement.
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The states |±〉 are orthogonal, even though the coherent states, |η〉 and
| − η〉, are not. It is true that such a pair of coherent states will be nearly
orthogonal if η is large enough and thus considered to form a qubit. Within
this approximation, the symmetrical states would then be a mere unitary
transformation of a single qubit. However, no approximation is needed in
this process of carving a qubit from an infinite-dimensional system, if we use
|±〉 as the original basis states. We would then consider a common garden
coherent state to be the superposition of a symmetrical pair of Schrödinger
cats. (Is there some approximation involved?) Indeed, this generation of a
qubit by a reflection is not limited to coherent states, but could in principle
be realized for any unsymmetrical initial state.

(iii) Fock states, |n〉, i.e., the excited states of the harmonic oscillator,
also have reflection symmetry with respect to the origin. Thus, from the
exact Wigner function, first derived by Grönewold [46],

Wn(x) =
(−1)n

π�
e−x2/�Ln

(
2x2

�

)
, (4.104)

where Ln is a Laguerre polynomial, we obtain the chord function

χn(ξ) =
e−ξ2/4�

2π�
Ln

(
ξ2

2�

)
. (4.105)

It is interesting to note that the symmetry centre, which produces the maxi-
mum amplitude of the Wigner function, is nowhere near the classical manifold
with energy En =

(
n+ 1

2

)
�ω. However, this point lies in a region of narrow

oscillations, so that it does not affect the average of smooth observables.
Figure 4.7 shows the Wigner function for the Fock state with n = 2; the ori-
gin is a maximum because of the positive parity. The unfolding of this peak
for nonsymmetric Wigner functions is discussed in Sect. 4.10.

The Wigner function exhibits the interference fringes for the measurement
of any variable ap+bq. In the case of the Fock state, these are always present.
A simple way to see this is that any direction for the projection will be
somewhere tangent to each of the continuous curves that form the Wigner
function fringes. These regions dominate the projection. This example thus
illustrates the necessity for the Wigner function to have negative regions:
This is the only way that interference can result from a mere projection in
phase space.

The Fock states are an example of a complete parity basis, which is even
or odd according to the state label, n. Hence, if a pure state, |ψ〉, is specified
in this basis, then

Wψ(0) =
1
π�

∑

n

[
|〈2n|ψ〉|2 − |〈(2n+ 1)|ψ〉|2

]
. (4.106)

Such a decomposition can in principle be achieved for general arguments of
the Wigner function, but then it is necessary to translate the whole Fock state
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Fig. 4.7. The Wigner function for the n = 2 Fock state. The classical Bohr-
quantized circle lies just outside the maximum of the outer fringe. The chord func-
tion is a mere rescaling of the Wigner function

basis instead of just the ground state, as in the definition of coherent states.
If we similarly translate the Hamiltonian, it will commute with R̂x instead of
commuting with R̂0. The eigenstates of all such Hamiltonians will form a good
odd–even basis. The difficulty with defining a semiclassical correspondence
for both these classes of eigenstates is that the alternative odd and even
Bohr-quantized curves approach each other as � → 0.

All the above examples are singled out by some point of reflection symme-
try, which needs to be chosen as the origin for the chord function to be real.
The chord function must assume its maximum value 1/(2π�)L at the origin,
whatever the symmetry, because of normalization. The Wigner amplitude,
|W (x)|, need not have such a prominent peak in general. However we shall
see in Sect. 4.10 that the large-scale features of the semiclassical forms of the
Wigner function and the chord function maintain a mutual correspondence,
even in the absence of a reflection symmetry.

It is important to note that the commutation, [ρ̂, R̂0] = 0, guarantees
that W (x) is a symmetric function with respect to (classical) reflection at the
origin. This is a consequence of the fact that if ρ̂R = R̂ ρ̂ R̂, then WR(x) =
W (R(x)), the classical reflection of the argument. However, it is the maximum
(or minimum) value at the origin which guarantees that the density operator
is pure with respect to parity, i.e., it is either ρ̂+, or ρ̂−. Indeed, even though
a mixture of an even density and an odd density (i.e., ρ̂ = c+ρ̂+ + c−ρ̂−) will
trivially satisfy [ρ̂, R̂0] = 0, we see that W (0) = (c+ − c−)/(π�)L will not be
maximal.
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Perhaps the converse property is of even more interest: If a Wigner func-
tion is symmetric about the origin, but |W (0)| < (π�)−L, then the state must
be a mixture. After all, if it is a mixture of parities, it cannot be a pure state.
It is only if the mixture is restricted to states of the same parity that it will
not be detected by W (0). There are many measures of degrees of mixedness,
or impurity, but it is specially nice to be able to spot this property by a mere
glance at the Wigner function. Furthermore, the Wigner function, i.e., the
parity decomposition, is a measurable property [28, 34, 47].

The Wigner function may be considered as a field of probabilities for
parity decompositions in phase space. Each reflection separates the infinite-
dimensional Hilbert space into a pair of orthogonal components. If we just
consider a single reflection, this goes a long way to reducing the Hilbert
space to that of a single qubit, a two state system. No matter how classical
the appearance of the Wigner function (i.e., it may be smooth and positive),
it is always fully quantum as far as parity measurements are concerned. The
situation is quite different, for instance, for position measurements. Then
there is an important difference between the Wigner function for a pure
Schrödinger cat state and a mixture of cats with different phases. This is
revealed by the fine interference fringes between the two classical regions,
but it is even more clearly displayed by the pair of correlation peaks far from
the origin of the chord function. The relation between these features and
entanglement is discussed in Sect. 4.8.

There is a vast literature concerning the Wigner function. Only a few
topics have been mentioned here, and it has been necessary to leave out even
as relevant a topic as quantum tomography. The adaptation of the Wigner
function for finite Hilbert spaces is of special relevance for quantum com-
puting and quantum information theory. Then the rule that each quantum
state corresponds to a volume of (2π�)L in classical phase space restricts
the overall phase space volume. Thus, one must first face a choice of the
topology in which to compactify phase space. It turns out that the simplest
choice is a torus, though single qubits are more naturally displayed on a
Bloch sphere. In spite of the intrinsic interest in many of the aspects of finite
space Wigner functions [48, 49], there is no overall agreement on the choice
of Wigner function properties to emphasise. Not all formalisms lead to a cor-
responding natural definition of a conjugate chord function as in [50], nor is
there an overall preoccupation with invariance with respect to those symplec-
tic transformations which preserve the torus topology of phase space [51]. A
final difficulty concerns the appearance of ghost images and dimensionally
dependent features [52].

So far nothing has been said of an alternative phase space representation,
the Husimi function [53, 54]. Defined in terms of coherent states |η〉 as

ρH(η) = 〈η|ρ|η〉 = tr ρ |η〉〈η| , (4.107)

it can be interpreted as a smoothed Wigner function,
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ρH(η) =
∫

dxWη(x)W (x) (4.108)

because of (4.70). The lack of purity of a state can be described in terms of
the Wehrl entropy ,

SW = −(2π�)L

∫
dη ρH(η) ln ρH(η) . (4.109)

According to Wehrl’s inequality [55, 56] (see also [57]), the Wehrl entropy is
always bounded from below by the von Neumann entropy (4.93). For more
recent developments concerning the Wehrl entropy, see e.g., [58].

The Husimi function is most appropriate for the study of quantum chaos,
because it highlights the classical region. But such a downplay of the quantum
interferences, achieved by coarse graining the Wigner function, is not what
one would ordinarily seek in quantum information theory. In a way, this is
just the opposite of the chord function, which squashes all classical structure
to the neighbourhood of the origin, so as to display the purely quantum
coherences. It is remarkable that both these antithetical representations are
intimately related to the translation operators, since the Husimi function for
a pure state, ρ̂ = |ψ〉〈ψ|, can be rewritten as

ρH(η) = |〈ψ|η〉|2 = |〈ψ|T̂η|(η = 0)〉|2 . (4.110)

Hence, the basic difference with respect to Cη in (4.89) is the exchange of
|0〉, the Gaussian ground state of the harmonic oscillator, for |ψ〉 itself.

A further comment is that the quantum interferences are displayed by the
isolated zeroes of Husimi functions [59], in the case that L = 1. A uniform
distribution of zeroes has been used to characterize the eigenstates of classi-
cally chaotic systems. Even though this is of great theoretical interest, these
zeroes are usually located in regions where the Husimi function is already
tiny, so that they may be very hard to compute. For instance, in the case
of the cat state (4.102) with small η, they are found in the shallow negative
regions where |W+(x)| is exponentially small.

4.7 The Partial Trace: Sections and Projections

Recall that the representation of operators, Â = |A〉〉, in a given basis, such as
〈〈Q|A〉〉, corresponds to the foliation of the double phase space, X = (P,Q),
by a set of Lagrangian planes, Q = constant. Performing linear canonical
transformations in double phase space, we are free to choose the alternative
coordinate planes, Q = (q−, q+), or Q = x, or Q = y = Jξ among others. In
all cases, it is the fact that

〈〈Q′|Q〉〉 = δ(Q′ −Q), (4.111)
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which permits us to identify the expansion coefficient in

Â = |A〉〉 =
∫

dQA(Q) |Q〉〉 (4.112)

with 〈〈Q|A〉〉.
Let us now assume that the (single) phase space is itself a product of a

pair of phase spaces, x = x1 × x2, each with 2Lj dimensions, and that these
correspond to Hilbert spaces, Hj , so that H = H1⊗H2. Then we can always
decompose the Lagrangian planes chosen as a basis for double phase space as
the product Q = Q1 ⊗ Q2, corresponding to operators |Q〉〉 = |Q1〉〉 ⊗ |Q2〉〉.
Thus the complete |Q〉〉 representation becomes

Â = |A〉〉 =
∫

dQ1dQ2 A(Q1, Q2) |Q1〉〉 ⊗ |Q2〉〉 . (4.113)

The definition of the partial trace is then

tr2 Â = tr2 Î2 Â =
∫

dQ1dQ2 A(Q1, Q2) |Q1〉〉 〈〈I2|Q2〉〉 , (4.114)

so that
A1(Q1) =

∫
dQ2 A(Q1, Q2)〈〈I2|Q2〉〉 (4.115)

defines the |Q1〉〉 representation of a reduced operator Â1, which acts on the
Hilbert space H1. It is well known that in the case of the density operator
ρ̂, the reduced operator ρ̂1 describes the same probability as the full density
operator for all measurements concerning the subsystem-1.5

The different forms of the partial trace depend essentially on the Hilbert–
Schmidt product (4.36) of each basis with the identity. In the case of the
position basis, we have

〈〈I|Q〉〉 = tr Î |q−〉〈q+| = δ(q− − q+) , (4.116)

so that

A1(Q1) =
∫

dq2−dq2+ A(Q1, Q2 =(q2−, q2+)) δ(q2− − q2+)

=
∫

dq2 A(Q1, (q2, q2)) .
(4.117)

Here, we should recall that,

A(Q1, (q2, q2)) = 〈q1−, q2| Â | q1+, q2〉 , (4.118)

in matrix notation.
5 A measurement on subsystem-2 only affects ρ̂1 if the information on the outcome

of the measurement is made available [6].
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In the centre representation, we have simply

〈〈I|x〉〉 = tr Î (2LR̂x) = 1 , (4.119)

leading to the phase space projection:

A1(x1) =
∫

dx2 A(x1,x2) . (4.120)

In the case of the density operator, the corresponding reduced Wigner func-
tion, W1(x1), is thus obtained from W (x) in the same way as a marginal
probability distribution is projected out of the full distribution .

The simplest choice turns out to be the chord representation. Then, |I〉〉 =
T̂ξ=0 is an element of the operator basis, so that

〈〈I|y〉〉 = δ(y) = δ(ξ) . (4.121)

Thus in this case, instead of projecting, we obtain the reduced operator
merely by slicing through the chord symbol:

A1(ξ1) = A(ξ1, ξ2 =0) . (4.122)

Of course, the reduced operator Â1 itself is insensitive to the procedure used
to obtain it within the various representations, but the ease of calculating
the reduction is a special bonus of the chord representation.

It should be recalled that the partial trace is invariant with respect to uni-
tary transformations performed internally within the factor Hilbert space H2:
Û = Û2⊗ Î1 (see, e.g., [6]). In the example where the subsystems are particles
that have separated by a large distance, then these are truly local transforma-
tions. In other words, if Â′ = Û ÂÛ−1, then tr2 Â′ = tr2 Â. This invariance
corresponds semiclassically to the freedom of performing canonical trans-
formations that leave invariant the x1 variables: (x1, x2) → (x1, x

′
2). This

also implies that only the double phase space corresponding to x2 changes:
(X1,X2) → (X1,X

′
2). If the canonical transformation is linear in the single

phase space, then both the centres, x, and the chords, ξ, are propagated in
the arguments of their respective functions by this same transformation.

Another point that is worth discussing concerns the completeness of the
operator representations. Notice that the restricted translation operators

|y1〉〉1 = T̂ ′
ξ1

= T̂ξ1 ⊗ Î2 (4.123)

are a subset of the translation operators used in the chord basis for the full
Hilbert space, H1 ⊗ H2. It follows that a representation in terms of the
restricted translation operators, T̂ ′

ξ1
, would not be complete. Likewise, we

may define the restricted unitary reflection operators,

|x1〉〉1 = 2L1R̂′
x1

= R̂x1 ⊗ Î2 , (4.124)



196 A.M. Ozorio de Almeida

but these do not belong to the centre basis for H1 ⊗H2. Even so, we may
also define directly the reduced operator Â1 as

Â1 =
∫

dx1 A1(x1) |x1〉〉1 , (4.125)

with
A1(x1) = tr Â (2L1R̂′

x1
) . (4.126)

Let us now specialize to density operators. In the case of the chord func-
tion, we must take care of the normalization, which depends on the number
of degrees of freedom. Hence, the validity of (4.122) for the chord represen-
tation of density operators ρ(ξ) and ρ1(ξ1) implies that the reduced chord
function is

χ1(ξ1) = (2π�)L2 χ(ξ1, ξ2 =0) . (4.127)

Clearly, χ1(ξ1) is the Fourier transform of W1(x1). Since the definition of
phase space correlations (4.86) is valid for the reduced system, we obtain the
reduced correlations as a projection of the correlations of the entangled pure
state:

C1(ξ1) = tr ρ̂1 T̂(ξ1,0) ρ̂1 T̂
†
(ξ1,0)

= (2π�)L1

∫
dη1 eiη1∧ξ1/� |χ1(η1)|2

= (2π�)L1

∫
dη1dη2 eiη1∧ξ1/�δ(η2) |χ(η)|2

=
∫

dξ2
(2π�)L2

C(ξ) .

(4.128)

It should be recalled that the relation between the Wigner function and the
chord function mimics that between a classical probability distribution and
its characteristic function. The definition of correlations and the classical
marginal distributions also goes through as above. Therefore, the property
that the correlation of the reduced state for a given displacement, ξ1, is just
the integral over all correlations in the larger space over displacements that
share this component also holds for classical probability distributions. This
relation does not depend on the full density operator being a pure state.

All the representations that we have been discussing will factor in the
case that ρ̂ = (|ψ1〉 ⊗ |ψ2〉)(〈ψ2| ⊗ 〈ψ1|) is a product pure state. Thus we
obtain product Wigner functions,W (x) = W1(x1)W2(x2), and product chord
functions, χ(ξ) = χ1(ξ1) χ2(ξ2). These relations may be interpreted in terms
of average values of the basis operators, i.e., 〈R̂x〉 = 〈R̂′

x1
〉 〈R̂′

x2
〉 and 〈T̂ξ〉 =

〈T̂ ′
ξ1
〉〈T̂ ′

ξ2
〉. Thus, a sufficient criterion for the existence of entanglement would

be that either of these equalities not hold for some centre x or some chord ξ.
Curiously, it is not the generation of cross-correlations that is usually

taken as a measure of entanglement, but instead the loss of correlations of the
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reduced density operator. Its von Neumann entropy (4.93) is often referred
to as the entanglement. Expanding this to first order, results in the linear
entropy of a partial trace of the full density operator,

1− tr ρ̂2
1 = 1− C1(0) , (4.129)

recalling (4.86). The square root of two times this last expression is the con-
currence, another widely used entanglement measure (see, e.g., Sect. 2.4.2 or
[60]). At first sight, these are not obvious measures of overall entanglement,
because we should obtain the same measure by singling out instead the re-
duced density operator for subsystem-2. But, it is a simple consequence of
(4.94), the invariance of the quantum correlations with respect to Fourier
transforms for a pure state, that

C1(0) =
∫

dξ2
(2π�)L2

C(0, ξ2)

=
∫

dξ2
(2π�)L2

∫
dη

(2π�)L
C(η) eiη2∧ξ2

=
∫

dη1

(2π�)L1
C(η1, 0) = C2(0) .

(4.130)

Reinterpreted in terms of Wigner functions,

∫
dx1 [W1(x1)]2 =

∫
dx2 [W2(x2)]2 , (4.131)

this is another remarkable property of pure quantum states, for it is highly
unusual for the second moment of a pair of marginal probability distributions
to display a similar equality. Indeed, it is not even generally true for product
distributions.

The focus on properties of the reduced density matrix makes sense when
it is recalled that the concept of entanglement involves separate measurement
on each of the components. The invariance of the partial traces with respect
to local transformations carries over to the above measures of entanglement.
Even better, it has been shown that it is possible to concentrate the entangle-
ment within a few elements of an ensemble of identical states, by performing
local measurements [61].

In terms of Husimi functions (4.108), it is natural to describe entangle-
ment in terms of the Wehrl entropy (4.109) for the reduced density operator.
Another way of describing entanglement is through the Schmidt decomposi-
tion (4.18). The corresponding Wigner and chord functions are then

W (x) = (π�)−L
∑

i,j

λiλj 〈ψi
1|R̂′

x1
|ψj

1〉〈ψi
2|R̂′

x2
|ψj

2〉 (4.132)
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and

χ(ξ) = (2π�)−L
∑

i,j

λiλj 〈ψi
1|T̂ ′

−ξ1
|ψj

1〉〈ψi
2|T̂ ′

−ξ2
|ψj

2〉 , (4.133)

recalling the definitions of the restricted reflection operators (4.124) and the
restricted translation operators (4.123). In both cases, the partial trace over
subsystem-2 substitutes the second Dirac bracket by δi,j , so that

W1(x1) = (π�)−L1
∑

i

λi
2 〈ψi

1|R̂′
x1
|ψi

1〉 =
∑

i

λi
2 Wi(x1) (4.134)

and

χ1(ξ1) = (2π�)−L1
∑

i

λi
2 〈ψi

1|T̂ ′
−ξ1

|ψi
1〉 =

∑

i

λi
2 χi(ξ1) . (4.135)

Therefore, the reduced density operator is just a mixture of the factor states
in the Schmidt decomposition for subsystem-1, with probabilities specified
by the square of the Schmidt coefficients. The square of the concurrence is
then given by

1− tr ρ̂ 2
1 = 1−

∑

i

λi
4 , (4.136)

in terms of the second moment of the weighing factors for the mixed state.
Note that, contrary to the Schmidt number, this is a well-defined entan-
glement measure for systems with infinite Hilbert spaces, if the above sum
converges. Clearly, the purity of subsystem-2 involves the same sum over
Schmidt coefficients, in agreement with our previous calculation (4.130).

Consider now the case that a subsystem can again be split up into a pair
of components. If the full original state was entangled, the reduced density
operator is not pure. Hence, it is an average over pure states. Obviously, this
cannot be a product state overall, but if all of the pure states are products,
the mixed state is not characterized as entangled, rather it is a separable
state. The problem with mixed states is that the decomposition into pure
states is not unique, so a state is considered separable if there exists any
decomposition where it is separated (see Sect. 2.2.2).

Let us now define a classical pure state as a δ-function in phase space.
Then all pure states, f(x) = δ(x), in a higher dimensional phase space will be
product states, because the higher dimensional δ-functions factor as δ(x) =
δ(x1) δ(x2). In this sense, the expression

f(x) =
∫
f(x′) δ(x− x′)dx′ (4.137)

can be reinterpreted as a classical separable state: Any probability distribu-
tion in phase space can be considered as a linear combination of products
of classical pure states. Thus, we can never consider a classical phase space
distribution to be entangled, no matter how strong the correlations may be
between variables pertaining to different subsystems.
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What if a mixed Wigner function for a bipartite state is everywhere posi-
tive? Can we mimic the above reasoning to conclude that there is no entangle-
ment? In general this is not so, because the function δ(x) does not represent
a density operator in the Weyl representation. It represents instead the re-
flection operator, which has an infinitely degenerate negative eigenvalue, as
discussed in Sect. 4.5. The closest that is possible is the coherent state (4.100),
which approaches a δ-function as � → 0, but imposes an extra smoothing on
the Wigner function for any combination of these pure states. Indeed, a gen-
eral superposition of coherent states is defined by a weight function, known
as the Glauber–Sudarshan P-function in quantum optics [8, 62, 63]. So, it is
the positivity of a P-function that guarantees a separable state, rather than
that of the Wigner function, because each coherent state can be factored.

To close this section, let us now study another kind of projection of the
Wigner function. Whereas, by projecting onto a component subspace we gen-
erate a reduced Wigner function, a projection onto a Lagrangian plane (4.79)
results in a probability density. All the coordinates of such a plane correspond
to commuting operators. In the case of a bipartite system, we can define a
Lagrangian plane by separately choosing some linear combination of the vari-
ables for each subsystem, q′1 = α1p1 + β1q1 and q′2 = α2p2 + β2q2, so that
each coordinate, q′j , pertains to a different subsystem.

Consider now pairs of either–or measurements on both these variables,
i.e., we can define observables Ô1a, Ô1b, Ô2a and Ô2b which take the value
+1, for q′j in the interval ja, and −1 outside. In terms of projection operators
P̂ja, we have Ôja = 2P̂ja− Î and Ô1aÔ2a = 4P̂1aP̂2a− 2P̂1a− 2P̂2a + Î, with
similar formulae for the other products of commuting operators. Combining
the expectation values for these products in the form of the CHSH inequality
(4.17),

〈Ô1aÔ2a〉+ 〈Ô1aÔ2b〉+ 〈Ô1bÔ2a〉 − 〈Ô1bÔ2b〉

= 4
(
〈P̂1aP̂2a〉+ 〈P̂1aP̂2b〉+ 〈P̂1bP̂2a〉 − 〈P̂1bP̂2b〉

)
−4

(
〈P̂1a〉+ 〈P̂2a〉

)
+2 ,

(4.138)

we can now evaluate each expectation value on the right-hand side as a
definite integral of the probability density over some region of the (q′1, q

′
2)

plane. This is a purely classical set-up, so that by regrouping,

2−4
(
〈P̂1a〉 − 〈P̂1aP̂2b〉

)
−4

(
〈P̂2a〉 − 〈P̂1bP̂2a〉 − 〈P̂1aP̂2a〉

)
−4〈P̂1bP̂2b〉 ≤ 2 ,

(4.139)
we rederive the CHSH inequality, because none of the terms with the factor
−4 can be positive.

We thus verify that the correlations measured among commuting pairs of
either–or observables of each subsystem lie within strictly classical bounds,
irrespective of any possible entanglement of their combined state. It makes
no difference whether, or not, the Wigner function has negative regions. The
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point is that we need to deal only with a single positive projection, which is
a true probability distribution. To obtain a violation of the CHSH inequality,
we must choose noncommuting pairs of observables for each component. The
correlation for the observables from each pair may still be computed from the
probabilities in the respective Lagrangian plane, but we must use different
planes in each of the four CHSH correlations. Then, if the overall Wigner
function that generates all these densities has negative regions, the CHSH
inequality may be violated, as discussed in the following section.

Apparently, there has not been much effort to relate the intuitively appeal-
ing picture of entanglement, as the source of nonclassical correlations in Bell
inequalities, to the technical entanglement measures appropriate to quantum
information theory. However, a recent paper by Cirone [64] bridges this gap
for finite-dimensional systems. The main point is that measurements are re-
stricted to projection operators for the factor states in the Schmidt basis. It
is then shown that the same concurrence, which was introduced in terms of
the partial trace, can be expressed as a sum over conditional probabilities for
measurements on either component.

4.8 Generating a Classical Entanglement:
The EPR State

We have seen how symplectic transformations correspond exactly to unitary
transformations in Hilbert space. Let us now examine how these can produce
entangled states, given that the initial state, ρ̂, is a product of states, each
represented by its Wigner function, Wj(xj), or its chord function, χj(ξj),
so that W (x) = W1(x1)W2(x2) and χ(ξ) = χ1(ξ1)χ2(ξ2). For the canonical
transformation to be linear, the classical interaction Hamiltonian H(x1, x2)
can only be bilinear in the phase space variables. A convenient choice is
H = p1q2− p2q1, which may be interpreted as angular momentum, L3, if the
degrees of freedom refer to Cartesian coordinates in a plane. This Hamiltonian
merely rotates both p and q coordinates in the argument of W (x) and χ(ξ).
Then, after a rotation by π/4, the density operator becomes ρ̂′, represented
by

χ′(ξ) = χ1(
ξp1 + ξp2√

2
,
ξq1 + ξq2√

2
) χ2(

ξp1 − ξp2√
2

,
ξq1 − ξq2√

2
) . (4.140)

Since the partial trace is specified by (4.127), a section of the chord function,
the reduced density for the first component becomes

χ′
1(ξ1) = (2π�)χ1(

ξp1√
2
,
ξq1√

2
) χ2(

ξp1√
2
,
ξq1√

2
) , (4.141)

in the chord representation.
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So as to emphasise how classical an entanglement can be, let us choose for
example initial Gaussian states, the product of harmonic oscillator ground
states, described by

Wj(xj) =
1
π�

exp
(
−ωj

�
q2

j −
1

�ωj
p2

j

)
(4.142)

or

χj(ξj) =
1

2π�
exp

(

−ωj

�

(
ξqj

2

)2

− 1
�ωj

(
ξpj

2

)2
)

. (4.143)

Thus, the probability distribution for positions,

f(q) =
∫

dpW (x) , (4.144)

is also a Gaussian with elliptic level curves that are rotated if ω1 �= ω2. In this
case, the effect of rotation, followed by the partial trace, is just a narrowing
of the Gaussians in the chord representation:

χ′
1(ξ1) =

1
2π�

exp

[

−ω1 + ω2

2�

(
ξq1

2

)2

− 1
2�

(
1
ω1

+
1
ω2

)(
ξp1

2

)2
]

. (4.145)

Notice that normalization is maintained, because we still have χ′
1(ξ1) =

(2π�)−1 at the chord origin, but now the widths of the position Gaussian
and of the momentum Gaussian are obtained through different kinds of av-
erage. The overall narrowing indicates that this is no longer a pure state.

The Wigner function presents a more intuitive picture of a mixed state.
Taking the Fourier transform:

W ′
1(x1) =

1
πΔ

exp
[
− 2ω1ω2q2

1

�(ω1 + ω2)
− 2p2

1

�(ω1 + ω2)

]
. (4.146)

This still integrates to one, as demanded by normalization, but the Gaussian
is now broader, with the uncertainty Δ = (ω1 + ω2)/2

√
ω1ω2 > �, if ω1 �=

ω2. Therefore, this is not a pure state. The way that this example relates
entanglement to initial states and evolution, which may both be considered
classical, is even more extreme than those discussed in [65], which relies on
projections of the Husimi function, in the approximate role of phase space
probability density.

Another confirmation that this is not a pure state is that

tr (ρ̂′1)
2 = 2π�

∫
dx1 [W′

1(x1)]2 = 2π�

∫
dξ1 |χ′

1(ξ1)|2 < 1 , (4.147)
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and yet it might seem that this is just a freak result. After all, our state has
remained a smooth classical-like Gaussian throughout. There are none of the
quantum oscillations which are supposed to be the fingerprint of nonclassi-
cality: For a start, nothing would prevent us from identifying the original
Wigner function with a classical probability distribution. We then perform a
simple rotation with perfect classical correspondence and obtain a new Gaus-
sian, which pretends to be a quintessentially quantum entangled state! Have
we been led astray?

Let us go back to the full Wigner function, resulting from choice (4.142)
of Gaussians for the initial product state. After the π/4 rotation, this is just

W ′(x) =
(

1
π�

)2

exp
[
−ω1

2�
(q1 + q2)2 −

1
2�ω1

(p1 + p2)2
]

× exp
[
−ω2

2�
(q1 − q2)2 −

1
2�ω2

(p1 − p2)2
]
. (4.148)

In the extreme limit where ω1 → 0 and ω2 →∞, we would obtain a normal-
ized version of

W ′(x) = δ(q1 − q2) δ(p1 + p2) , (4.149)

which is just the Wigner function derived by Bell [66] for the original EPR
wave function [3], namely 〈q|ψ〉 = δ(q1− q2). It so happens that the rotation
that transformed the coordinates of our initial state, i.e., the ground state
of an anisotropic plane harmonic oscillator, is essentially the same as the
transformation from the individual coordinates for a pair of particles into a
centre of mass, together with a relative internal coordinate. (These transfor-
mations differ only by local unitary transformations.) The EPR state is a
δ-function both in the relative position and in the total momentum, which is
the conjugate variable to the centre of mass.

Thus, the entanglement verified in our initial example implies that the
centre of mass is likewise entangled with the relative coordinate in the EPR
state. Perhaps, it is then even more surprising that the example that was
picked is in some sense classical, if we consider that the discussion of the
nonlocal and hence nonclassical nature of quantum mechanics started off with
the historic EPR paper [3]. The fact that the full Wigner function is positive,
not only allows us to interpret it as a classical probability distribution, but it
also ensures that there is a wide range of measurements that can be performed
on either component which may be considered as classical and hence local.
We already found in the previous section that any measurement of pairs
of either–or variables, Ô1a, Ô1b, Ô2a and Ô2b which take the value +1, for
general phase space coordinates, q′j , in the interval ja, and −1 outside, have
correlations that satisfy the CHSH inequality, even if the Wigner function has
negative regions. That was the case where the quantum observables, which are
measured, commute. The statement for positive Wigner functions, due to Bell
[5, 66], is stronger: The inequality is then satisfied even if we choose different
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variables for each measurement, q′1a �= q′1b and q′2a �= q′2b, corresponding to
different Lagrangian planes in phase space and, hence, quantum operators
that do not commute. The argument is essentially the same as in the last
section, except that now we can obtain all the expectation values from the full
Wigner function, acting as a global probability distribution, instead of dealing
with different probability distributions, each restricted to the Lagrangian
plane specific to a given pair of variables.

Let us now reexamine our classically entangled states from the point of
view of the reduced reflection operators, R̂′

xj , defined as (4.124), that act
on each component and, in particular, the parity operators, R̂′

0j . Such ob-
servables do not correspond to smooth phase space functions in classical me-
chanics, indeed, the Weyl representation of these operators (4.65) is singular.
Nonetheless, parity, or reflection measurements can also be carried out on
classical waves, as discussed in Sect. 4.2, and the question now concerns the
possible correlations between measurements for different reflections carried
out on both components. The fact that the full Wigner function (4.148) is
symmetric with respect to the origin implies that the density operator com-
mutes with the full reflection operator, R̂0. However, W ′

1(0) < π�, so it does
not have pure parity, i.e., ρ̂′1 does not commute with R̂′

01. Hence, according
to the discussion in Sect. 4.6, there is a finite probability to obtain negative
(odd) parity, if such a measurement is performed on subsystem-1.

Perhaps this would not be so obvious a priori: The original state, repre-
sented by W0(x), is a pure state with pure positive (even) parity and this is
also a property of the rotated state. This property can be verified directly, or
it may be noticed that the driving Hamiltonian commutes with R̂0, so that
H(x) = H(R0(x)). But now we find that a measurement of the parity of
subsystem-1 has a finite probability to be negative. How is that?

Notice that the same also holds for subsystem-2: The derivation of the
reduced density operator, ρ̂′2, represented byW ′

2(x2) and χ′
2(ξ2), goes through

exactly as above. Therefore, there is also a finite probability of measuring
negative parity in subsystem-2. As was shown in Sect. 4.6, the fact that,
in both cases, the Wigner function is symmetric about the origin implies
that all the pure states, into which the mixed reduced density operator can
be decomposed, must have pure parity, but they are not all even. For this
reason, the Wigner function (4.146) had to be obtained as a Fourier transform
of the chord function; not a mere rescaling.

The crucial point is that the rotated state, ρ̂′, does not commute with
either of the restricted reflections defined by (4.124), i.e., R̂′

01 or R̂′
02, even

though it commutes with their product: R̂0 = R̂′
01R̂

′
02 = R̂′

02R̂
′
01. It should be

recalled that the reduced Wigner functions are entirely determined by (4.125)
and (4.126) in terms of the restricted reflections. Thus, to understand the
results of measurements of either R̂′

0j , we need a common basis for all these
operators. This is just the product of an even–odd basis for subsystem-1 and
subsystem-2, for which we obtain the table:
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even⊗ even→ even,

even⊗ odd→ odd,

odd⊗ even→ odd,

odd⊗ odd→ even.

(4.150)

Since ρ̂′ is even, it must be a superposition of the subset of basis states:
even ⊗ even or odd ⊗ odd. Furthermore, we now find that the evolved state
has a full parity correlation: If the measurement of R̂′

01 specifies even parity,
then this must be the outcome of a measurement on R̂′

02. Conversely, if one
of the subsystems has odd parity, then we know this to be the parity of the
other subsystem.

An initial product state of an even Schrödinger cat state with a coherent
state, which is rotated by π/4, is also susceptible to the foregoing analysis.
However, an odd symmetry Schrödinger cat would have perfectly anticorre-
lated odd–even, or even–odd subsystems. In the case of the rotated cat, the
evidence for entanglement is much more obvious. The pair of Gaussians is
not centred on either of the planes in the chord phase space pertaining to
the pair of subsystems. The partial trace that generates the reduced chord
functions is a section of the full chord function, so that it does not capture
these local maxima. Therefore, there is a deficit of phase space correlations
in the reduced density operators.

Returning to the original rotated squeezed state, or, equivalently, the orig-
inal EPR state, we must conclude that this is truly quantum and correctly
described as entangled, i.e., just as nonclassical as the spin states in the Bohm
version of EPR [7] that are commonly used to exemplify entanglement. The
secret lies in choosing the property to be measured: A position measurement
on one of the subsystems would not distinguish between this pure quan-
tum state and a classical distribution. However, a measurement of reflection
eigenvalues evokes a spin-like duality of this apparent classical state.

The violation of the CHSH inequality for reflection measurements of the
smoothed EPR state completes the evidence of its nonclassicality. Banaszek
and Wodkiewicz [67] first pointed out that the full pure state Wigner function
of a bipartite state is proportional to the correlation for reflection measure-
ments on each subsystem: 〈R̂′

x1R̂
′
x2〉 = (π�)2W (x). This leads to a viola-

tion of the CHSH inequality for reflection measurements of the EPR state.
They also proposed a realistic experiment for this in quantum optics [68].
We have already verified the complete correlation for parity measurements
about the origin, which is in agreement with the maximal value that the full
Wigner function (4.148) attains there. Its decay for large x1 or x2 signifies
that 〈R̂′

x1R̂
′
x2〉 → 0, so that

CCHSH = 〈R̂′
01R̂

′
02〉+ 〈R̂′

01R̂
′
x2〉+ 〈R̂′

x1R̂
′
02〉 − 〈R̂′

x1R̂
′
x2〉 (4.151)

sinks from 2, its maximal classical value at the origin, to the limiting value
1. However, the origin is not the maximum of CCHSH(x1,x2), because the
lowest order expansion of
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(π�)2W ′(x) = 1− ω1

2�
(q1 + q2)2 −

1
2�ω1

(p1 + p2)2

− ω2

2�
(q1 − q2)2 −

1
2�ω2

(p1 − p2)2 + . . . (4.152)

leads to

CCHSH(x1,x2) = 2 + (ω1 − ω2)q1q2 +
(

1
ω1

− 1
ω2

)
p1p2 + . . . . (4.153)

Hence, the origin is a saddle point of CCHSH(x1,x2), which increases from
its maximal classical value along the directions q2 = −q1 and p2 = p1, if one
chooses the EPR conditions, ω2 >> ω1, i.e., if reflections are chosen in the
directions where the Wigner function decays rapidly.

So we find that nonlocal correlations between two subsystems can arise
even if the Wigner function for the full system is non-negative everywhere.
It would thus appear that there is no relation between fringes in the Wigner
function, where it attains negative values, and entanglement. The former
project as interference fringes for possible measurements, but this is quite
a different kind of nonclassicality than the delicate nonclassical correlations
resulting from entanglement. But even here, one must be wary! If the mea-
surements on the different components concern mechanical observables, nat-
ural for classical particles, then there is at least one case where negativity
of the Wigner function has been shown to produce nonclassical correlations.
Indeed, Bell [5, 66] constructed an example where the CHSH inequality is
violated for measurements on pairs of different variables,6 q′j = qj + tjpj and
q′j = qj + τjpj . The state for which this is proved is a variation of our rotated
state, where one of the factor Gaussians is substituted by the second excited
state of the harmonic oscillator.

It should always be remembered that entanglement is not an intrinsic
property, but only acquires its meaning within a specified basis, the compu-
tational basis, or the basis where measurements are made. In this respect,
it resembles semiclassical caustics, which depend on our choice of represen-
tation. If the physical realization of the foregoing example were the ground
state of a 2-D harmonic oscillator, then the rotation, which was found to
produce entanglement, could be dismissed as merely an inconvenient coor-
dinate transformation: Unless all measurements were to be restricted to the
original coordinate axes, it would not be relevant, though true, to say that
the rotated system became entangled, while the original system was a mere
product. In contrast, for the alternative physical interpretation of one of the
new coordinates as the centre of mass for a pair of particles, its entanglement
with the internal coordinate can be important.

6 Even though Bell refers to the transformation parameters as times, these should
be understood as specifications of the variables and hence of the planes onto
which the Wigner function is projected.
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4.9 Entanglement and Decoherence

The process of decoherence also results from the interaction of a pair of
systems: the (small) open system and a (large) system, which we call the
environment (see, e.g., Chap. 5). In contrast to the previous example, the
component over which we trace, so as to obtain the reduced density oper-
ator, is on a scale which defies anything but a statistical description. The
usual picture is that the environment lies somewhere outside, but it may
just as well consist of the internal degrees of freedom for the centre of mass
(CM) of a large system of particles. Exchanges between the large-scale mo-
tion and the internal variables lead to macroscopic energy dissipation as well
as decoherence of the quantum state for the CM.

Let us consider the simplest possible example of the decoherence of the
CM, because of its entanglement with internal variables. The CM for a system
of L identical particles, assumed to be distinguishable is Q = (q1+. . .+qL)/L.
The conjugate variable to Q is the total momentum, P = p1 + . . .+ pL. Let
us further imagine that they are each in the same single particle state, ρ̂, and
that these are independent, i.e., both the Wigner and the chord function are
products over those of the individual states. This may seem too restrictive,
because we should allow for different values of each average position 〈qj〉,
but we can redefine this as the origin for each j, so that we then measure Q
from 〈Q〉.

In the case of L = 2, X = (P,Q) is obtained from the rotated coordi-
nate in the previous section by a mere canonical rescaling of 2±1/2. It has
been repeatedly emphasised that all such symplectic transformations on the
argument of the Wigner or the chord function correspond exactly to unitary
quantum transformations. So let us now reverse this transformation in the
case of general L: We define Q′ = L1/2Q and P ′ = L−1/2P . Then, if the
individual Wigner functions, W (xj), were classical probability distributions,
the central limit theorem would imply that the distribution for X ′ = (P ′, Q′)
converges to

WL(X′) → [πΔK]−1 exp[−X′K−1X′/2], (4.154)

as L→∞, where we recall the definition of the Schrödinger covariance ma-
trix, K, in (4.7) and its determinant ΔK

2. It is remarkable that positivity is
not a necessary ingredient for the proof of the central limit theorem: In the
case of identical square-integrable pure state Wigner functions, it is shown by
Tegmark and Shapiro [69] that convergence onto a Gaussian again results. If
the state for the individual particles is not represented by a pure state Gaus-
sian, then the moments for this state will be such that ΔK > �. Therefore,
the centre of mass Wigner function, WL(X), is a broader Gaussian than is
permissible for a pure state and hence it must be a mixture. So, the CM of
independent particles with identical Wigner functions is generally entangled
with the internal phase space variables (which it has not been necessary to
describe explicitly). Curiously, the potential entanglement resulting from the
central limit theorem was overlooked in [69].
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How does this entanglement with the internal coordinates evolve in time?
It is easy to verify that free motion, generated by the Hamiltonian H =
p1

2+. . .+pL
2, will not alter ΔK. Thus the entanglement of the centre of mass

with the environment is invariant in this simple case. Let us suppose instead
that, though the particles do not interact, there is an external nonlinear field.
Furthermore, the particles are sufficiently separated and the field is smooth
enough so that it is legitimate to linearize the field locally around each 〈qj〉.
Then the Wigner function for each particle will evolve classically in different
ways. The restrictive form of the central limit theorem in [69] cannot be
applied in this case, but one can readily adapt Levy’s proof [70] to allow
for different Wigner functions, as long as the moments are finite and their
average values converge.

The averages of the moments resulting from the different evolutions of
many Wigner functions lead to a progressive loss of purity for the CM. Just
as in (4.146) for the simple example of the last section, the uncertainty, ΔK,
increases. On top of that, the central limit theorem supplies the statistical
ingredient for the decoherence process. It might appear strange to obtain
decoherence even for a system of noninteracting particles, but it should be
recalled that the CM momentum P , or P ′, appears linearly in each of the
terms, pj

2, in the kinetic energy, which accounts for the coupling to the
internal momenta.

So as to make contact with the theory of Markovian open systems, we can
now reinterpret this evolution of the reduced density matrix as a convolution
of the original (Gaussian) Wigner function for the CM with a broadening
Gaussian. For its Fourier transform, the chord function, this evolution is
merely the product of an initial Gaussian with another Gaussian that narrows
in time,7 This is exactly the result for quantum Markovian evolution of an
open system, in the case of quadratic internal Hamiltonian and linear coupling
to the environment [71].

The deduction of the canonical Lindblad equation (see Sect. 5.3.2 or [72]),

∂ρ̂

∂t
= − i

�

[
Ĥ, ρ̂

]
− 1

2�

∑

j

[
L̂j ,

[
L̂j , ρ̂

]]
, (4.155)

that governs the evolution of the density operator in the quantum Markovian
theory does not proceed by tracing out a larger system. All the same, the
mere fact that the evolution is entirely determined by a differential equation
precludes any delayed participation of previous motion. The Lindblad opera-
tors L̂j , account for the nonunitarity of the evolution, that is, they take the
part of the coupling to the environment. The Markovian approximation can
in principle include arbitrary (non-quadratic) internal Hamiltonians for the
system.

7 It must be recalled that the average CM evolution 〈X(t)〉 has been hidden by a
time-dependent coordinate transformation.
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The derivation of the Markovian approximation in the context of quantum
optics (the damped harmonic oscillator) was carried out originally by Agarwal
[73], but this is all in the language of complex phase space. The exact solution
of (4.155) in [73] and that of Diosy and Kiefer [74], for the free open particle,
are special cases of the general result in [71]: The chord representation of
(4.155) is particularly simple if the Lindblad operators are linear functions of
positions and momenta, L̂j = lj · x̂, and if the Hamiltonian is quadratic [71]:

∂χ

∂t
(ξ, t) = {H(ξ), χ(ξ, t)} − 1

2�

∑

j

(lj · ξ)2 χ(ξ, t) . (4.156)

Here, the first term is the classical Poisson bracket. The exact solution of this
equation factors into the unitary evolution of the chord function, undisturbed
by the Lindblad operators, and a narrowing Gaussian factor. In the Wigner
representation this becomes a Gaussian smudging of the unitarily evolving
Wigner function. It is remarkable that the Wigner function becomes positive
after a time that depends only on the parameters of the Lindblad equation,
regardless of the initial pure state [71, 74].

In our simple example of the evolution of the CM, the Lindblad opera-
tor for its one-dimensional motion should be chosen as the total momentum
P̂ , because this is the variable that couples to the internal motion, which is
hidden within the Markovian approximation. Even though the central limit
theorem supplied the Gaussian factor of the evolving chord function, the
overall Gaussian form for the evolving CM does not reflect the richness of
other possibilities for Markovian evolution. However, by considering the en-
tanglement of a small system with the CM of a large system and following the
treatment of the example in the preceding section, we obtain qualitatively
the general Markovian picture. This allows an interpretation of the Gaussian
smoothing as originating in the multiple small contributions contemplated in
the central limit theorem.

The standard way of going beyond the Markovian approximation, so as to
include memory kept by the environment of the previous motion of the sys-
tem, is to use the Feynman–Vernon functional [75], in the manner exploited
by Caldeira and Leggett [76, 77]. Some standard references for dissipation,
noise and decoherence from a quantum optics point of view are the books by
Louisell [78], Gardiner [79] and Weiss [80] (see also Chap. 5).

4.10 A Semiclassical Picture of Entanglement

A full semiclassical theory of entanglement is still a program for the future,
fascinating but difficult. Even so, several of the main elements for this con-
struction can be sketched in this concluding section.

For a start, one should note that it is feasible to fit semiclassical torus
states with Gaussian coherent states placed along the classical torus in a very
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satisfactory way [81]. The number of Gaussians required increases with a frac-
tional power of �

−1. The important qualitative feature is that the interference
fringes of the Wigner function, near the midpoint of the pair of Gaussians
composing a Schrödinger cat, have the same wavevector as the similar fringes
at the centre of a geometrical chord of the classical torus. Therefore, in both
cases we can describe very fine interference fringes related to long chords.
It also follows that our preliminary study of entanglement and decoherence
of cat states is not at all irrelevant for understanding the evolution of prod-
uct semiclassical states. Refinements of the fitting procedure allow even the
description of the diffraction effects near caustics [82].

Before analysing product states and their partial trace, recall that dyadic
operators, |ψ〉〈φ|, live in a kind of squared Hilbert space, which corresponds to
a double phase space. These operators were shown in Sect. 4.5 to correspond
to a product Lagrangian surface in double phase space, τψ ⊗ τφ, if each of
these states corresponds to a Lagrangian surface on its own right. Thus, the
projection operator, or pure state density operator, ρ̂ = |ψ〉〈ψ|, is just a
particular case of this general rule. If the state, |ψ〉, corresponds to a Bohr–
Sommerfeld quantized torus of L dimensions in a 2L-D phase space, then
the full density operator must correspond to a 2L-D product torus in 4L-
D double phase space. This is in exact analogy to the way that a product
torus describing the state for several particles (4.30) is obtained from lower
dimensional tori. Recalling that we can describe double phase space in terms
of the centre coordinates, x, and the conjugate variables, y = Jξ (4.47),
the semiclassical Wigner function, W (x), is then a superposition of complex
exponentials, such that each phase is obtained by integrating y(x) along one
of the different branches of the torus. Even though this approximation breaks
down along caustics, the latter provide ready indication of regions where the
Wigner function has a large intensity.

The problem is then to relate the semiclassical Wigner function, defined
on the centre plane, to classical structures that are also portrayed in this
same single phase space. Let us consider first the semiclassical Wigner and
chord functions in the simplest case where L = 1. The Fock states (4.104)
are good examples of semiclassical torus states when the quantum number n
is large. Introducing the asymptotic expression for Laguerre polynomials,

lim
n→∞

Ln

(
z2

2n

)
= J0

(√
2z
)
, (4.157)

together with the large argument expansion,

J0(y) ≈
2

√
πy

cos
(
y − π

4

)
, (4.158)

brings the Wigner function for these states into a semiclassical form. To
understand this, we must investigate the geometry of the double torus from
the point of view of the simpler quantized curve, which is just a circle in this
case.
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Every point on the double torus represents a pair of points on the quan-
tized curve and vice versa. A given pair of points, x±, on the quantized curve,
defines a geometric chord: ξ = x+−x−. Hence, y = Jξ is the chord coordinate
on the double torus, which has the centre coordinate, x = (x+ + x−)/2. Ob-
viously, the exchange of x+ with x− produces a new chord of the quantized
curve with the same centre, x. Viewed in double phase space, there must
always be pairs of chords of the double torus projecting onto each centre, x.
The symmetry of this surface with respect to the identity plane, y = 0, leads
to complex conjugate phase contributions, in line with the above cosine for
the Fock state. Actually this is a general feature: Because the Wigner func-
tion is real, the chord pairs will always produce semiclassical contributions
adding up to cosines.

To obtain the phase of the cosine contribution to the semiclassical Wigner
function for each pair of chords, the best course is to use a result which was
put in its most general form by Littlejohn [29]. This concerns the general
overlap, 〈ψ|φ〉, of quantum states associated semiclassically to curves τψ and
τφ: The semiclassical contributions arise from the intersections of these clas-
sical curves and the phase difference between a pair of contributions is just
the area sandwiched between the corresponding pair of intersections, divided
by Planck’s constant, as shown in Fig. 4.8.

We can immediately apply this principle to the Wigner and chord func-
tions for pure states, by recalling that Wψ(x) = (π�)−1〈ψ|(R̂x|ψ〉) and
χψ(ξ) = (2π�)−1〈ψ|(T̂ξ|ψ〉). The semiclassical state R̂x|ψ〉 is merely the state
constructed from the reflected curve, Rx(τψ), whereas T̂ξ|ψ〉 corresponds to

Fig. 4.8. (a) The semiclassical Wigner function is constructed by reflecting the
torus τ around the point x: The chords ξ(x) are defined by the intersections with
Rxτ . (b) The semiclassical chord function is constructed by translating τ by the
vector ξ: The centres x(ξ) lie halfway back along ξ from each intersection of τ with
Tξτ
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the translated curve Tξ(τψ). Therefore, in the case of the Wigner function,
we obtain the phase of the cosine as half of the area sandwiched between the
torus and its reflection at the centre x [22], which coincides with the area
between the torus and the chord [83, 84] (see also [85]). Furthermore, this
construction supplies, at a glance, the tips of all the chords centred on x
as the intersections between both curves, as seen in Fig. 4.8(a). Note that
once the curve has been reflected around the origin, we need only translate
R0(τψ) to obtain the reflections around all other centres because of the group
property, Rx = Tx ◦R0 ◦ T−x.

The same geometrical method can be used to study the structure of cen-
tres for a pre-specified chord ξ on the curve τψ. Each intersection of τψ with
the translated curve Tξ(τψ) reveals one of the tips where the chord is to be
placed and hence the centre of the chord, as shown in Fig. 4.8(b). In the case
of open curves, the chord function may actually be simpler than the Wigner
function because it is not necessary to have interference, as in the case of the
parabola, for which there is only one intersection. In the case that τψ has a
centre of symmetry, as in the example of the Fock state, we thus find that
the simple relation (4.99) between Wigner and chord functions is respected
by the semiclassical approximation.

Viewed in single phase space, the caustics of the Wigner function arise
from coalescing torus chords, as their centre, x, is moved. This occurs at
the tangencies of Rx(τψ) with the fixed curve, τψ. Similarly, the caustics of
the chord function are the loci of ξ such that Tξ(τψ) is tangent to τψ. On
the other hand, in double phase space, the Wigner caustics for a torus state
are viewed as projection singularities of the double torus, τψ ⊗ τψ, which
lies above the area inside τψ. The general geometric constructions underlying
the semiclassical Wigner and chord functions are readily extended to phase
space representations of dyadic operators, |ψ〉〈φ|, corresponding to double
tori, τψ ⊗ τφ. Their Weyl representation is known as cross-Wigner functions
or Moyal brackets [86], whose semiclassical form is presented in [87].

There are many fascinating features of caustics in the phase space repre-
sentations of pure states that have been studied and many more that must
still be analyzed. For instance, the build up in the centre of the Wigner func-
tion for the Fock state is a caustic. Its semiclassical origin is the degeneracy
of a continuum of chords conjugate to the same symmetry centre. However,
this is a nongeneric feature of reflection-symmetric states. If the symmetry
is broken, this supercaustic unfolds into a cusped triangle, first described by
Berry [84]. The unfolding of higher dimensional caustics for rotated product
tori, studied in [22], and displayed in Fig. 4.9 were also examined for the
Wigner function. It turns out that the double fold surfaces of the Wigner
caustic that meet along the torus do not unfold in the manner portrayed in
Fig. 4.4 because of a symmetry constraint.

The limit of small chords is specially relevant for semiclassical theory. For
the Wigner function, it singles out the classical torus itself as the Wigner
caustic. The uniform approximation for the Wigner function throughout this
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Fig. 4.9. Typical fringes for a semiclassical Wigner function. Alternating large
values of the Wigner function, positive or negative, are represented by dark regions.
The classical curve follows closely the border of the fringes. The triangular structure
of interfering fringes near the centre results from the unfolding of the maximum of
the Fock states due to symmetry breaking

region is presented in [84], for the case of a curve and in [88], for a two-
dimensional torus. A pair of sheets of the double torus are joined on the
identity plane along this curve or torus. The large amplitude of the Wigner
function oscillations near the quantized curve is due to this caustic. The cor-
responding caustic of the chord function collapses onto the origin, whatever
the geometry of the classical region. The neighbourhood of this highly non-
generic chord-caustic is discussed in [32]. Once again, we find that all regions
where C(ξ) = |χ(ξ)|2 is large, outside of an �

L/2-neighbourhood of the origin,
point to phase space correlations that are truly quantum in nature.

So far, we have only discussed static properties of the density operator.
In turning to dynamics, a preliminary point is that we should distinguish
the Weyl propagator , U(x), that is, the Weyl representation of the evolution
operator, from the propagator for Wigner functions. The former is unitary
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and is hence supported by its own static Lagrangian surface in double phase
space, as discussed in Sect. 4.5, so that its semiclassical description is similar
to that of the Wigner function itself. This can be deduced from a path integral
in single phase space [33, 89].

In order to treat the unitary evolution of the density operator for a pure
bound state, |ψ〉〈ψ|, with L degrees of freedom, we need to consider the cor-
responding classical evolution of a 2L-D Lagrangian torus, τψ ⊗ τψ. Initially,
this is separable within both single phase spaces, even though the product
is not factored in the centre×chord coordinates. The classical motion must
propagate the tips of each chord, x− and x+, in the same way. Taking account
of the change of sign, p− → −p−, in the definition of double phase space, we
find that the double phase space Hamiltonian must be

IH(X) = H(x+)−H(x−) = H(x− Jy/2)−H(x + Jy/2) . (4.159)

This classical Hamiltonian can be verified to preserve the product form of
the geometric structures in each of the phase spaces x±, but it will not pre-
serve initial products within each of these in the general case that the single
Hamiltonian H(x) has coupling terms between different degrees of freedom. It
propagates Lagrangian surfaces in double phase space that correspond either
to density operators (according to the Liouville–von Neumann equation) or
to unitary operators (the Heisenberg equation). The explicit formulae for the
semiclassical evolution of the Wigner function are given in [90, 91], whereas
the evolving action of the chord function is presented in [92]. The difficulty
that cannot be avoided by changing the representation lies in the caustics of
the initial state, which require more sophisticated semiclassical treatment.

A promising approach lies in the definition of integral propagators for the
Wigner function, or for the chord function. The former may be defined in
terms of the Weyl propagator as a kind of second-order Wigner transform
(see e. g. [90])

UU(xt,x) =
∫

dμU−t

(
x + xt

2
− μ

)
Ut

(
x + xt

2
+ μ

)
exp

(
2i
�
μ ∧ (xt − x)

)
.

(4.160)
Their explicit semiclassical form has been developed in [93], but these propa-
gators also have their own intrinsic caustics. More recently, caustic-free prop-
agators, from the Wigner to the chord function and vice versa, have been
defined [92]. These are constructed either in terms of the propagation of the
unitary reflection operators or the translation operators, instead of directly
evolving the density operator itself.

Several of the geometrical structures underlying the semiclassical the-
ory of the Wigner function for nonseparable tori in double phase space that
evolve under the action of a general Hamiltonian were analyzed in [22] for
the simplest case where L = 2. It will be necessary to push much further this
analysis, while adapting it to the chord function. The reason is again that
the partial trace of the density operator is obtained immediately by a section
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through the chord function, χ(ξ1, ξ2 = 0), which is defined semiclassically by
a nonseparable section of the double torus that evolved from an initial prod-
uct τψ ⊗ τψ. For instance, the quantum state and the corresponding double
torus both loose their product form under the action of the simple Hamil-
tonian employed in Sect. 4.8. But slicing through a torus produces either a
single or several lower dimensional tori.

This indicates that the semiclassical theory of reduced density operators
that allow us to quantify entanglement, or to calculate the correlations on
separate measurements effected on each component of the system, can still
be associated to lower dimensional Lagrangian surfaces that are no longer
products. The problem is to work out the actions and the amplitudes for this
multidimensional geometry. This general picture agrees with initial results
for nonunitary Markovian evolution of semiclassical Wigner functions [94]. It
is notable that the same methods that have been used in [95] to show that
the semiclassical approximation of the Wigner function satisfies the purity
condition, tr ρ̂2 = ρ̂, reveal the loss of purity with time due to decoherence.

A question that has deserved some attention concerns the effect of classi-
cally chaotic evolution on decoherence of an open system, or equivalently on
the evolution of a system entangled to a larger system. There are indications
that the reduced density matrix will loose its purity faster than in the case
of regular internal motion [96], and this is verified exactly for quadratically
hyperbolic Markovian systems [71], which capture a small element of chaotic
behaviour. However, it must be stressed that there is no essential extra dif-
ficulty, in dealing semiclassically with the short-time evolution generated by
chaotic hamiltonians, over regular motion.

In contrast, the evolution of initial pure states, which are eigenstates of
chaotic Hamiltonians, is a much tougher problem. According to Shnirelman’s
theorem [97–99], in most cases these ergodic states are supported by the
full energy shell, in the sense that averages of smooth observables are well
approximated by classical averages over this surface. Often, such a state is
thus described as having a δ-function over the shell for its Wigner function,
but this is not true of its detailed structure: The intimacy between the Wigner
function and phase space reflections implies that interference fringes generally
exist halfway between classical regions of the Wigner function. According to
the discussion of correlations of the Wigner function in Sect. 4.6, these are
equal to their Fourier transform, for all pure states. Therefore, a Wigner
function supported by an energy shell of large phase space dimensions must
have oscillations in its interior of correspondingly small wavelength. These are
readily derived semiclassically for mixtures of states within a narrow energy
range [33, 100], but the fine features of pure states have so far eluded all
theoretical efforts.

So far, our discussion has concerned a chaotic initial state for the rele-
vant component, but nothing prevents us from defining an initial state that
is ergodic for some chaotic Hamiltonian defined over the full product Hilbert
space of the system with its environment. The situation is then radically
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different from the states that have evolved semiclassically from product
states: It is possible to disentangle each state that has lost its original prod-
uct form by merely reversing time. This corresponds classically to running
Hamilton’s equations backwards in the double phase space; e.g., in the ex-
ample of Sect. 4.8, the product of two harmonic oscillator ground states is
recovered from the EPR state. This is always possible in quantum mechan-
ics because one can always specify a unitary transformation on the entire
Hilbert space, which transforms any given state into any other state and we
can choose the latter to be a product state. However, the correspondence
for this disentanglement cannot exist for ergodic eigenstates of a classically
chaotic Hamiltonian defined on the full Hilbert space.

In the case where L = 2, the energy shell is 3-D and, because it has an
extra dimension, there exists no classical canonical transformation, whether
linear or nonlinear, that can transform it into the product of two closed
curves. Therefore, ergodic eigenstates are essentially entangled from the point
of view of classical correspondence. The study of traces of classical chaos in
quantum mechanics is known as quantum chaology [85]. The characterization
of ergodic states as those that are not classically disentangleable establishes
a bridge between entanglement theory and quantum chaology. It remains to
be seen whether this special type of entangled state has any application in
quantum information theory.
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58. F. Mintert and K. Życzkowski: Wehrl entropy, Lieb conjecture, and entangle-
ment monotones, Phys. Rev. A 69, 022317 (2004)193

59. P. Leboeuf and A. Voros. In: Quantum Chaos: Between Order and Disorder,
ed by G. Casati and B. Chirikov (Cambridge University Press, Cambridge
1995) p. 507193

60. F. Mintert, A. R. R. Carvalho, M. Kus and A. Buchleitner: Measures and
dynamics of entangled states, Phys. Rep. 415, 207 (2005)197

61. H. B. Bennet, H. J. Bernstein, S. Popescu and B. Schumacher: Concentrating
partial entanglement by local operations, Phys. Rev. A 53, 2046 (1996)197

62. R. J. Glauber: Photon correlations, Phys. Rev. Lett. 10, 84 (1963)199
63. E. C. G. Sudarshan: Equivalence of semiclassical and quantum mechanical

descriptions of statistical light beams, Phys. Rev. Lett. 10, 277 (1963)199
64. M. A. Cirone: Entanglement correlations, Bell inequalities and the concur-

rence, Phys. Lett. A 339, 269 (2005)200
65. R. M. Angelo, S. A. Vitiello, M. A. M. de Aguiar and K. Furuya: Quantum

linear mutual information and classical correlations in globally pure bipartite
systems, Physica A 338, 458 (2004)201

66. J. S. Bell. In: New Techniques and Ideas in Quantum Measurement Theory
(New York Academy of Sciences, New York 1986)202, 205

67. K. Banaszek and K. Wodkiewicz: Nonlocality of the Einstein-Podolsky-Rosen
state in the Wigner representation, Phys. Rev. A 58, 4345 (1988)204

68. K. Banaszek and K. Wodkiewicz: Testing quantum nonlocality in phase space,
Phys. Rev. Lett. 82, 2009 (1999)204

69. M. Tegmark and H. S. Shapiro: Decoherence produces coherent states: An
explicit proof for harmonic chains, Phys. Rev. E 50, 2538 (1994)206, 207

70. P. Levy: Theorie de l’Adition des Variables Aleatoires (Gauthier-Villars, Paris
1954)207

71. O. Brodier and A. M. Ozorio de Almeida: Symplectic evolution of Wigner
functions in Markovian open systems, Phys. Rev. E 69, 016204 (2004)207, 208, 214

72. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu and H. D. Zeh:
Decoherence and the Appearance of a Classical World in Quantum Theory
(Springer, Berlin 1996)207

73. G. S. Agarwal: Brownian motion of a quantum oscillator, Phys. Rev. A 4, 739
(1971)208

74. L. Diosi and C. Kiefer: Exact positivity of the Wigner and P-functions of a
Markovian open system, J. Phys. A 35, 2675 (2002)208

75. R. P. Feynman and F. L. Vernon: The theory of a general quantum system
interacting with a linear dissipative system, Ann. Phys. (NY) 24, 118 (1963)208

76. A. O. Caldeira and A. J. Leggett: Quantum tunnelling in a dissipative system,
Ann. Phys. (NY) 149, 374 (1983)208

77. A.O. Caldeira and A.J. Leggett: Ann. Phys. (NY) 153, 445 (1984)208
78. W. H. Louisell: Quantum Properties of Radiation (Wiley, New York 1973)208
79. C. W. Gardiner: Quantum Noise (Springer, Berlin 1991)208
80. U. Weiss: Quantum Dissipative Systems, Series in Modern Condensed Matter

Physics, vol 2 (World Scientific, Singapore 1993)208



4 Entanglement in Phase Space 219

81. A. Kenfack, J. M. Rost and A. M. Ozorio de Almeida: Optimal representations
of quantum states by Gaussians in phase space, J. Phys. B 37, 1645 (2004)209

82. F. Toscano, A. Kenfack, A. R. R. Carvalho, J. M. Rost and A. M. Ozorio de
Almeida: Husimi-Wigner representation of chaotic eigenstates, Proc. R. Soc.
Lond. A 464, 1503 (2008)209

83. F. A. Berezin and M. A. Shubin. In: Colloquia Mathematica Societatis Janos
Bolyiai (North-Holland, Amsterdam 1972) p. 21211

84. M. V. Berry: Semi-classical mechanics in phase space: a study of Wigner’s
function, Phil. Trans. Roy. Soc. A 287, 237 (1977)211, 212

85. M. V. Berry. In: Chaos and Quantum Physics; Les Houches LII, ed by
M.-J. Giannoni, A. Voros and J. Zinn-Justin (NorthHolland, 1991) p. 251211, 215

86. E. J. Moyal: Quantum Mechanics as a Statistical Theory, Proc. Cambridge
Phil. Soc. 45, 99 (1949)211

87. A. M. Ozorio de Almeida: Semiclassical Matrix Elements, Rev. Bras. Fis. 14,
62 (1984)211

88. A. M. Ozorio de Almeida: The Wigner function for two-dimensional tori:
uniform approximation and projections, Ann. Phys. (NY) 145, 100 (1983)212

89. A. M. Ozorio de Almeida: Phase space path integral for the Weyl propagator,
Proc. R. Soc. Lond. A 439, 139 (1992)213

90. P. P. M. Rios and A. M. Ozorio de Almeida: On the propagation of semiclas-
sical Wigner functions, J. Phys. A 35, 2609 (2002)213

91. T. A. Osborn and M. F. Kondratieva: Heisenberg evolution WKB and sym-
plectic area phases, J. Phys. A 35, 5279 (2002)213

92. A. M. Ozorio de Almeida and O. Brodier: Phase space propagators for quantum
operators, Ann. Phys. (NY) 321, 1790 (2006)213

93. T. Dittrich, C. Viviescas and L. Sandoval: Semiclassical propagator of the
Wigner function, Phys. Rev. Lett. 96, 070403 (2006)213

94. A. M. Ozorio de Almeida: Decoherence of semiclassical Wigner functions, J.
Phys. A 36, 67 (2003)214

95. A. M. Ozorio de Almeida: Pure state condition for the semiclassical Wigner
function, Physica A 110, 501 (1982)214

96. W. H. Zurek and J. P. Paz: Decoherence, Chaos, and the second law, Phys.
Rev. Lett. 72, 2508 (1994)214

97. A. I. Shnirelman: Ergodic properties of eigenfunctions, (Russian) Uspehi. Mat.
Nauk. 29, 181 (1974)214

98. Y. Colin de Verdière:Ergodicit et fonctions propres du laplacien, Comm. Math.
Phys. 102, 497 (1985)

99. S. Zelditch: Uniform distribution of eigenfunctions on compact hyperbolic sur-
faces, Duke Math. J. 55, 919 (1987)214

100. M. V. Berry: Fringes decorating anticaustics in ergodic wavefunctions, Proc.
R. Soc. A 424, 279 (1989)214



5 Introduction to Decoherence Theory

K. Hornberger

Arnold Sommerfeld Center for Theoretical Physics,
Ludwig–Maximilians–Universität München, Theresienstraße 37, D-80333 Munich,
Germany

5.1 The Concept of Decoherence

This introduction to the theory of decoherence is aimed at readers with an
interest in the science of quantum information. In that field, one is usually
content with simple, abstract descriptions of non-unitary “quantum chan-
nels” to account for imperfections in quantum processing tasks. However, in
order to justify such models of non-unitary evolution and to understand their
limits of applicability it is important to know their physical basis. I will there-
fore emphasize the dynamic and microscopic origins of the phenomenon of
decoherence, and will relate it to concepts from quantum information where
applicable, in particular to the theory of quantum measurement.

The study of decoherence, though based at the heart of quantum theory,
is a relatively young subject. It was initiated in the 1970s and 1980s with
the work of H. D. Zeh and W. Zurek on the emergence of classicality in the
quantum framework. Until that time the orthodox interpretation of quantum
mechanics dominated, with its strict distinction between the classical macro-
scopic world and the microscopic quantum realm. The mainstream attitude
concerning the boundary between the quantum and the classical was that
this was a purely philosophical problem, intangible by any physical analysis.
This changed with the understanding that there is no need for denying quan-
tum mechanics to hold even macroscopically, if one is only able to understand
within the framework of quantum mechanics why the macro-world appears
to be classical. For instance, macroscopic objects are found in approximate
position eigenstates of their center of mass, but never in superpositions of
macroscopically distinct positions. The original motivation for the study of
decoherence was to explain these effective super-selection rules and the ap-
parent emergence of classicality within quantum theory by appreciating the
crucial role played by the environment of a quantum system.

Hence, the relevant theoretical framework for the study of decoherence
is the theory of open quantum systems, which treats the effects of an un-
controllable environment on the quantum evolution. Originally developed to
incorporate the phenomena of friction and thermalization in the quantum
formulation, it has of course a much longer history than decoherence the-
ory. However, we will see that the intuition and approximations developed
in the traditional treatments of open quantum systems are not necessarily
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appropriate to yield a correct description of decoherence effects, which may
take place on a time scale much shorter than typical relaxation phenom-
ena. In a sense, one may say that while the traditional treatments of open
quantum systems focus on how an environmental “bath” affects the system,
the emphasis in decoherence is more on the contrary question, namely how
the system affects and disturbs environmental degrees of freedom, thereby
revealing information about its state.

The physics of decoherence became very popular in the last decade, mainly
due to advances in experimental technology. In a number of experiments
the gradual emergence of classical properties in a quantum system could be
observed, in agreement with the predictions of decoherence theory. Needles
to say, a second important reason for the popularity of decoherence is its
relevance for quantum information processing tasks, where the coherence of
a relatively large quantum system has to be maintained over a long time.

Parts of these lecture notes are based on the books on decoherence by
E. Joos et al. [1], on open quantum systems by H.-P. Breuer & F. Petruccione
[2], and on the lecture notes of W. Strunz [3]. Interpretational aspects, which
are not covered here, are discussed in [4, 5] and useful reviews by W. H. Zurek
and J. P. Paz can be found in [6, 7]. This chapter deals exclusively with
conventional, i.e., environmental decoherence, as opposed to spontaneous re-
duction theories [8], which aim at “solving the measurement problem of
quantum mechanics” by modifying the Schrödinger equation. These models
are conceptually very different from environmental decoherence, though their
predictions of super-selection rules are often qualitatively similar.

5.1.1 Decoherence in a Nutshell

Let us start by discussing the basic decoherence effect in a rather general
framework. As just mentioned, we need to account for the unavoidable cou-
pling of the quantum system to its environment. Although these environmen-
tal degrees of freedom are to be treated quantum mechanically, their state
must be taken unobservable for all practical purposes, be it due to their large
number or uncontrollable nature. In general, the detailed temporal dynam-
ics induced by the environmental interaction will be very complicated, but
one can get an idea of the basic effects by assuming that the interaction is
sufficiently short ranged to admit a description in terms of scattering the-
ory. In this case, only the map between the asymptotically free states before
and after the interaction needs to be discussed, thus avoiding a temporal
description of the collision dynamics.

Let the quantum state of the system be described by the density opera-
tor ρ on the Hilbert space H. We take the system to interact with a single
environmental degree of freedom at a time – think of a phonon, a polaron,
or a gas particle scattering off your favorite implementation of a quantum
register. Moreover, let us assume, for the time being, that this environmental
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“particle” is in a pure state ρE = |ψin〉〈ψin|E, with |ψin〉E ∈ HE. The scat-
tering operator Stot maps between the in- and out-asymptotes in the total
Hilbert space Htot = H ⊗ HE , and for sufficiently short-ranged interaction
potentials we may identify those with the states before and after the collision.
The initially uncorrelated system and environment turn into a joint state,

[before collision] ρtot = ρ⊗ |ψin〉〈ψin|E , (5.1)

[after collision] ρ′tot = Stot[ρ⊗ |ψin〉〈ψin|E]S†
tot . (5.2)

Now let us assume, in addition, that the interaction is non-invasive with
respect to a certain system property. This means that there is a number
of distinct system states, such that the environmental scattering off these
states causes no transitions in the system. For instance, if these distinguished
states correspond to the system being localized at well-defined sites then the
environmental particle should induce no hopping between the locations. In
the case of elastic scattering, on the other hand, they will be the energy
eigenstates. Denoting the set of these mutually orthogonal system states by
{|n〉} ∈ H, the requirement of non-invasiveness means that Stot commutes
with those states, that is, it has the form

Stot =
∑

n

|n〉〈n| ⊗ Sn , (5.3)

where the Sn are scattering operators acting in the environmental Hilbert
space. The insertion into (5.2) yields

ρ′tot =
∑

m,n

〈m|ρ|n〉|m〉〈n| ⊗ Sm|ψin〉〈ψin|ES†
n

≡
∑

m,n

ρmn|m〉〈n| ⊗ |ψ(m)
out 〉〈ψ

(n)
out|E , (5.4)

and disregarding the environmental state by performing a partial trace we
get the system state after the interaction:

ρ′ = trE (ρ′tot) =
∑

m,n

|m〉〈n|ρmn〈ψin|S†
nSm|ψin〉E︸ ︷︷ ︸

〈ψ(n)
out|ψ

(m)
out 〉E

. (5.5)

Since the Sn are unitary the diagonal elements, or populations, are indeed
unaffected,

ρ′mm = ρmm , (5.6)

while the off-diagonal elements, or coherences, get multiplied by the overlap
of the environmental states scattered off the system states m and n,

ρ′mn = ρmn〈ψ(n)
out|ψ

(m)
out 〉. (5.7)
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This factor has a modulus of less than one so that the coherences, which
characterize the ability of the system state to display a superposition be-
tween |m〉 and |n〉, get suppressed.1 It is important to note that this loss of
coherence occurs in a special basis, which is determined only by the scattering
operator, i.e., by the type of environmental interaction, and to a degree that
is determined by both the environmental state and the interaction.

This loss of the ability to show quantum behavior due to the interaction
with an environmental quantum degree of freedom is the basic effect of deco-
herence. One may view it as due to the arising correlation between the system
with the environment. After the interaction the joint quantum state of system
and environment is no longer separable, and part of the coherence initially
located in the system now resides in the non-local correlation between system
and the environmental particle; it is lost once the environment is disregarded.
A complementary point of view argues that the interaction constitutes an in-
formation transfer from the system to the environment. The more the overlap
in (5.7) differs in magnitude from unity, the more an observer could in prin-
ciple learn about the system state by measuring the environmental particle.
Even though this measurement is never made, the complementarity princi-
ple then explains that the wave-like interference phenomenon characterized
by the coherences vanishes as more information discriminating the distinct,
“particle-like” system states is revealed.

To finish the introduction, here is a collection of other characteristics and
popular statements about the decoherence phenomenon. One often hears that
decoherence (i) can be extremely fast as compared to all other relevant time
scales, (ii) can be interpreted as an indirect measurement process, a moni-
toring of the system by the environment, (iii) creates dynamically a set of
preferred states (“robust states” or “pointer states”) which seemingly do not
obey the superposition principle, thus providing the microscopic mechanism
for the emergence of effective super-selection rules, and (iv) helps to under-
stand the emergence of classicality in a quantum framework. These points will
be illustrated in the following, though (iii) has been demonstrated only for
very simple model systems and (iv) depends to a fair extent on your favored
interpretation of quantum mechanics.

5.1.2 General Scattering Interaction

In the above demonstration of the decoherence effect the choice of the in-
teraction and the environmental state was rather special. Let us therefore
now take Stot and ρE to be arbitrary and carry out the same analysis. Per-
forming the trace in (5.5) in the eigenbasis of the environmental state,
ρE =

∑
� p�|ψ�〉〈ψ�| E, we have

1 The value |ρmn| determines the maximal fringe visibility in a general interference
experiment involving the states |m〉 and |n〉, as described by the projection on a
general superposition |ψθ,ϕ〉 = cos (θ) |m〉 + eiϕ sin (θ) |n〉.
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ρ′ = trE
(
Stot[ρ⊗ ρE]S

†

tot

)
=
∑

j,�

p�〈ψj |Stot|ψ�〉Eρ〈ψ�|S†
tot|ψj〉E

=
∑

k

Wk ρW
†
k , (5.8)

where the 〈ψj |Stot|ψ�〉 are operators in H. After subsuming the two indices
j, ! into a single one, we get the second line with the Kraus operators Wk

given by

Wk =
√
p�k
〈ψjk

|Stot|ψ�k
〉 . (5.9)

It follows from the unitarity of Stot that they satisfy
∑

k

W†
kWk = I . (5.10)

This implies that (5.8) is the operator-sum representation of a completely
positive map Φ : ρ → ρ′ (see Sect. 5.3.1). In other words, the scattering
transformation has the form of the most general evolution of a quantum
state that is compatible with the rules of quantum theory. In the operational
formulation of quantum mechanics this transformation is usually called a
quantum operation [9], the quantum information community likes to call it
a quantum channel . Conversely, given an arbitrary quantum channel, one
can also construct a scattering operator Stot and an environmental state ρE

giving rise to the transformation, though it is usually not very helpful from a
physical point of view to picture the action of a general, dissipative quantum
channel as due to a single scattering event.

5.1.3 Decoherence as an Environmental Monitoring Process

We are now in a position to relate the decoherence of a quantum system to
the information it reveals to the environment. Since the formulation is based
on the notion of an indirect measurement it is necessary to first collect some
aspects of measurement theory [10, 11].

Elements of General Measurement Theory

Projective Measurements

This is the type of measurement discussed in standard textbooks of quantum
mechanics. A projective operator |α〉〈α| ≡ Pα = P2

α = P†
α is attributed to

each possible outcome α of an idealized measurement apparatus. The prob-
ability of the outcome α is obtained by the Born rule

Prob(α|ρ) = tr (Pαρ) = 〈α|ρ|α〉 , (5.11)
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and after the measurement of α the state of the quantum system is given by
the normalized projection

M : ρ → M (ρ|α) =
PαρPα

tr (Pαρ)
. (5.12)

The basic requirement that the projectors form a resolution of the identity
operator,

∑

α

Pα = I , (5.13)

ensures the normalization of the corresponding probability distribution
Prob (α|ρ).

If the measured system property corresponds to a self-adjoint operator A
the Pα are the projectors into its eigenspaces, so that its expectation value is

〈A〉 = tr (Aρ) .

If A has a continuous spectrum the outcomes are characterized by intervals
of a real parameter, and the sum in (5.13) should be replaced by a projector-
valued Stieltjes integral

∫
dP(α) =I, or equivalently by a Lebesgue integral

over a projector-valued measure (PVM) [10, 11].
It is important to note that projective measurements are not the most

general type of measurement compatible with the rules of quantum mechan-
ics. In fact, non-destructive measurements of a quantum system are usually
not of the projective kind.

Generalized Measurements

In the most general measurement situation, a positive (and therefore hermi-
tian) operator Fα > 0 is attributed to each outcome α. Again, the collection
of operators corresponding to all possible outcomes must form a resolution
of the identity operator,

∑

α

Fα = I. (5.14)

In particular, one speaks of a positive operator-valued measure (POVM) in
the case of a continous outcome parameter,

∫
dF(α) = I , and the probability

(or probability density in the continuous case) of outcome α is given by

Prob(α|ρ) = tr (Fαρ) . (5.15)

The effect on the system state of a generalized measurement is described by
a nonlinear transformation,

M : ρ → M (ρ|α) =

∑
k Mα,kρM†

α,k

tr (Fαρ)
, (5.16)
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involving a norm-decreasing completely positive map in the numerator (see
Sect. 5.3.1), and a normalization which is subject to the consistency require-
ment

∑

k

M†
α,kMα,k = Fα . (5.17)

The operators Mα,k appearing in (5.16) are called measurement operators,
and they serve to characterize the measurement process completely. The Fα

are sometimes called “effects” or “measurement elements”. Note that different
measurement operators Mα,k can lead to the same measurement element Fα.

A simple class of generalized measurements are unsharp measurements,
where a number of projective operators are lumped together with proba-
bilistic weights in order to account for the finite resolution of a measurement
device or for classical noise in its signal processing. However, generalized mea-
surements schemes may also perform tasks which are seemingly impossible
with a projective measurement, such as the error-free discrimination of two
non-orthogonal states [12, 13].

Efficient Measurements

A generalized measurement is called efficient if there is only a single summand
in (5.16) for each outcome α,

M (ρ|α) =
MαρM†

α

tr
(
M†

αMαρ
) , (5.18)

implying that pure states are mapped to pure states. In a sense, these are
measurements where no unnecessary, that is no classical, uncertainty is intro-
duced during the measurement process, see below. By means of a (left) polar
decomposition and the consistency requirement (5.17) efficient measurement
operators have the form

Mα = Uα

√
Fα , (5.19)

with an unitary operator Uα. This way the state after efficient measurement
can be expressed in a form which decomposes the transformation into a “raw
measurement” described by the Fα and a “measurement back-action” given
by the Uα:

M (ρ|α) = Uα︸︷︷︸
back-action

√
Fαρ

√
Fα

tr (Fαρ)︸ ︷︷ ︸
raw

measurement

U†
α︸︷︷︸

back-action

. (5.20)

In this transformation the positive operators
√

Fα “squeeze” the state
along the measured property and expand it along the other, complementary
ones, similar to what a projector would do, while the back-action operators Uα

“kick” the state by transforming it in a way that is reversible, in principle,
provided the outcome α is known. Note that the projective measurements
(5.12) are a subclass in the set of back-action-free efficient measurements.
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Indirect Measurements

In an indirect measurement one tries to obtain information about the system
in a way that disturbs it as little as possible. This is done by letting a well-
prepared microscopic quantum probe interact with the system. This probe is
then measured by projection, i.e., destructively, so that one can infer proper-
ties of the system without having it brought into contact with a macroscopic
measurement device. Let ρprobe be the prepared state of the probe, Stot de-
scribe the interaction between system and probe, and Pα be the projectors
corresponding to the various outcomes of the probe measurement. The prob-
ability of measuring α is determined by the reduced state of the probe after
interaction, i.e.,

Prob(α|ρ) = trprobe

(
Pαρ

′
probe

)
= trprobe

(
Pα trsys(Stot[ρ⊗ ρprobe]S

†
tot)

)
.

(5.21)
By pulling out the system trace (extending the projectors to Htot = H⊗Hp)
and using the cyclic permutability of operators under the trace we have

Prob(α|ρ) = tr
(
S†

tot[I⊗ Pα]Stot [ρ⊗ ρprobe]
)

= tr (Fαρ) , (5.22)

with microscopically defined measurement elements

Fα = trprobe

(
S†

tot[I⊗ Pα]Stot[I⊗ ρprobe]
)
> 0 (5.23)

satisfying
∑

α Fα = I . Since the probe measurement is projective, we can
also specify the new system state conditioned on the click at α of the probe
detector,

M (ρ|α) = trprobe (Mtot (ρtot|α))

= trprobe

(
[I⊗ Pα]Stot [ρ⊗ ρprobe] S

†
tot[I⊗ Pα]

tr (Fαρ)

)

=
∑

k

Mα,kρM
†
α,k

tr (Fαρ)
. (5.24)

In the last step a convex decomposition of the initial probe state into pure
states was inserted, ρprobe =

∑
k wk|ψk〉〈ψk| . Taking Pα = |α〉〈α| we thus

get a microscopic description also of the measurement operators,

Mα,k =
√
wk〈α|Stot|ψk〉 . (5.25)

This shows that an indirect measurement is efficient (as defined above) if the
probe is initially in a pure state, i.e., if there is no uncertainty introduced
in the measurement process, apart from the one imposed by the uncertainty
relations on ρprobe.
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If we know that an indirect measurement has taken place, but do not know
its outcome α we have to resort to a probabilistic (Bayesian) description of the
new system state. It is given by the sum over all possible outcomes weighted
by their respective probabilities,

ρ′ =
∑

α

Prob(α|ρ)M (ρ|α) =
∑

α,k

Mα,kρM
†
α,k . (5.26)

This form is the same as above in (5.8) and (5.9), where the basic effect of
decoherence has been described. This indicates that the decoherence process
can be legitimately viewed as a consequence of the information transfer from
the system to the environment. The complementarity principle can then be
invoked to understand which particular system properties lose their quantum
behavior, namely those complementary to the ones revealed to the environ-
ment. This “monitoring interpretation” of the decoherence process will help
us below to derive microscopic master equations.

5.1.4 A Few Words on Nomenclature

Since decoherence phenomena show up in quite different sub communities of
physics, a certain confusion and lack of uniformity developed in the termi-
nology. This is exacerbated by the fact that decoherence often reveals itself
as a loss of fringe visibility in interference experiments – a phenomenon,
though, which may have other causes than decoherence proper. Here is an
attempt of clarification:

– decoherence: In the original sense, an environmental quantum effect af-
fecting macroscopically distinct states. The term is nowadays applied to
mesoscopically different states as well, and even for microscopic states, as
long as it refers to the quantum effect of environmental, i.e., in practice
unobservable, degrees of freedom.
However, the term is often (ab-)used for any other process reducing the
purity of a micro-state.

– dephasing: In a narrow sense, this describes the phenomenon that coher-
ences, i.e., the off-diagonal elements of the density matrix, get reduced
in a particular basis, namely the energy eigenbasis of the system. It is
a statement about the effect and not the cause. In particular, dephasing
may be reversible if it is not due to decoherence, as revealed, e.g., in
spin-echo experiments.
This phrase should be treated with great care since it is used differently
in various sub communities. It is taken as a synonym to “dispersion” in
molecular physics and in nonlinear optics, as a synonym to “decoherence”
in condensed matter, and often as a synonym to “phase averaging” in
matter wave optics. It is also called a T2-process in NMR and in condensed
matter physics (see below).
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– phase averaging: A classical noise phenomenon entering through the de-
pendence of the unitary system evolution on external control parameters
which fluctuate (parametric average over unitary evolutions). A typical
example are the vibrations of an interferometer grating or the fluctua-
tions of the classical magnetic field in an electron interferometer due to
technical noise. Empirically, phase averaging is often hard to distinguish
from decoherence proper.

– dispersion: Coherent broadening of wave packets during the unitary evo-
lution, e.g., due to a velocity dependent group velocity or non-harmonic
energy spacings. This unitary effect may lead to a reduction of signal
oscillations, for instance, in molecular pump-probe experiments.

– dissipation: Energy exchange with the environment leading to thermal-
ization. Usually accompanied by decoherence, but see Sect. 5.3.4 for a
counterexample.

5.2 Case Study: Dephasing of Qubits

So far, the discussion of the temporal dynamics of the decoherence process
was circumvented by using a scattering description. Before going to the gen-
eral treatment of open quantum systems in Sect. 5.3, it is helpful to take a
closer look on the time evolution of a special system where the interaction
with a model environment can be treated exactly [2, 14].

5.2.1 An Exactly Solvable Model

Let us take a two-level system, or qubit, described by the Pauli spin operator
σz, and model the environment as a collection of bosonic field modes. In
practice, such fields can yield an appropriate effective description even if the
actual environment looks quite differently, in particular if the environmental
coupling is a sum of many small contributions.2 What is fairly non-generic in
the present model is the type of coupling between system and environment,
which is taken to commute with the system Hamiltonian.

The total Hamiltonian thus reads

Htot =
�ω

2
σz +

∑

k

�ωkb†kbk

︸ ︷︷ ︸
H0

+σz

∑

k

(
gkb†k + g∗kbk

)

︸ ︷︷ ︸
Hint

, (5.27)

with the usual commutation relation for the mode operators of the bosonic
field modes, [bi, b

†
k] = δik, and coupling constants gk. The fact that the

system Hamiltonian commutes with the interaction, guarantees that there is

2 A counterexample would be the presence of a degenerate environmental degree
of freedom, such as a bistable fluctuator.
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no energy exchange between system and environment so that we expect pure
dephasing.

By going into the interaction picture one transfers the trivial time evo-
lution generated by H0 to the operators (and indicates this with a tilde). In
particular,

H̃int (t) = eiH0t/�Hinte−iH0t/� = σz

∑

k

(gkeiωktb†k + g∗ke−iωktbk) , (5.28)

where the second equality is granted by the commutation [σz,Hint] = 0. The
time evolution due to this Hamiltonian can be formally expressed as a Dyson
series,

Ũ(t) = T← exp
(
− i

�

∫ t

0

dt′H̃int(t′)
)

=
∞∑

n=0

1
n!

(
1
i�

)n ∫ t

0

dt1 · · · dtnT←
[
H̃int(t1) · · · H̃int(tn)

]
, (5.29)

where T← is the time ordering operator (putting the operators with larger
time arguments to the left). Due to this time ordering requirement the series
usually cannot be evaluated exactly (if it converges at all). However, in the
present case the commutator of H̃int at different times is not an operator, but
just a c-number,

[H̃int (t) , H̃int(t′)] = 2i
∑

k

|gk|2 sin (ωk(t′ − t)) . (5.30)

As a consequence, the time evolution differs only by a time-dependent phase
from the one obtained by casting the operators in their natural order,3

3 To obtain the time-evolution Ũ (t) for the case [H̃ (t) , H̃ (t′)] = cI define the
operators

Φ (t) =
1

�

∫ t

0

dt′ H̃
(
t′
)

and U (t) = exp[iΦ (t)]Ũ (t). This way U (t) describes the “additional” motion
due to the time ordering requirement. It satisfies

∂tU (t) =

([
d

dt
eiΦ(t)

]
e−iΦ(t) +

1

i�
eiΦ(t)H̃ (t) e−iΦ(t)

)
U (t) .

The derivative in square brackets has to be evaluated with care since the H̃ (t) do
not commute at different times. By first showing that [A, ∂tA] = c ∈ C implies
∂tA

n = nAn−1∂tA − 1
2
n (n − 1) cAn−2 one finds

d

dt
eiΦ(t) =

−1

i�
eiΦ(t)H̃ (t) +

1

2�2
eiΦ(t)

[∫ t

0

dt′H̃
(
t′
)
, H̃ (t)

]
.
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Ũ(t) = eiϕ(t) exp
(
− i

�

∫ t

0

dt′H̃int(t′)
)
, (5.31)

where the phase is given by

ϕ (t) =
i

2�2

∫ t

0

dt1
∫ t

0

dt2Θ (t1 − t2)
[
H̃int (t1) , H̃int (t2)

]
. (5.32)

One can now perform the integral over the interaction Hamiltonian to get

Ũ(t) = eiϕ(t) exp

(
1
2
σz

∑

k

(
αk(t)b†k − α∗

k(t)bk

))

, (5.33)

with complex, time-dependent functions

αk(t) := 2gk
1− eiωkt

�ωk
. (5.34)

The operator Ũ(t) is diagonal in the eigenbasis of the system, and it de-
scribes how the environmental dynamics depend on the state of the system.
In particular, if the system is initially in the upper level, |ψ〉 = | ↑〉, one has

Ũ(t)| ↑〉|ξ0〉E = eiϕ(t)| ↑〉
∏

k

Dk

(
αk(t)

2

)
|ξ0〉 =: eiϕ(t)| ↑〉|ξ↑ (t)〉E , (5.35)

and for the lower state

Ũ(t)| ↓〉|ξ0〉E = eiϕ(t)| ↓〉
∏

k

Dk

(
−αk(t)

2

)
|ξ0〉 =: eiϕ(t)| ↓〉|ξ↓ (t)〉E .

(5.36)
Here we introduced the unitary displacement operators for the kth field mode,

Dk(α) = exp(αb†k − α∗bk) , (5.37)

which effect a translation of the field state in its attributed phase space. In
particular, the coherent state |α〉k of the field mode k is obtained from its
ground state |0〉k by |α〉k := Dk(α)|0〉k [15].

Equations (5.35) and (5.36) show that the collective state of the field
modes gets displaced by the interaction with the system and that the sense
of the displacement is determined by the system state.

Therefore, we have ∂tU (t) =
(
2�

2
)−1 ∫ t

0
dt′[H̃ (t′) , H̃ (t)] U (t), which can be in-

tegrated to yield finally

Ũ (t) = exp

(
− 1

2�2

∫ t

0

dt1

∫ t1

0

dt2
[
H̃ (t1) , H̃ (t2)

] )
e−iΦ(t) .



5 Introduction to Decoherence Theory 233

Assuming that the states of system and environment are initially uncor-
related, ρtot (0) = ρ⊗ ρE, the time-evolved system state reads4

ρ̃(t) = trE
(
Ũ(t)[ρ⊗ ρE]Ũ†(t)

)
. (5.38)

It follows from (5.35) and (5.36) that the populations are unaffected,

〈↑ |ρ̃(t)| ↑〉 = 〈↑ |ρ̃(0)| ↑〉 ,
〈↓ |ρ̃(t)| ↓〉 = 〈↓ |ρ̃(0)| ↓〉 ,

while the coherences are suppressed by a factor which is given by the trace
over the displaced initial field state,

〈↑ |ρ̃(t)| ↓〉 = 〈↑ |ρ̃(0)| ↓〉 trE

(
∏

k

Dk(αk(t))ρE

)

︸ ︷︷ ︸
χ(t)

. (5.39)

Incidentally, the complex suppression factor χ (t) is equal to the Wigner char-
acteristic function of the original environmental state at the points αk(t), i.e.,
it is given by the Fourier transform of its Wigner function [16].

Initial Vacuum State

If the environment is initially in its vacuum state, ρE =
⊗

k |0〉〈0|k, the
|ξ↑ (t)〉E and |ξ↓(t)〉E defined in (5.35), (5.36) turn into multi mode coherent
states, and the suppression factor can be calculated immediately to yield:

χvac(t) =
∏

k

〈0|Dk(αk(t))|0〉k =
∏

k

exp

(

−|αk(t)|2

2

)

= exp

(

−
∑

k

4 |gk|2
1− cos (ωkt)

�2ω2
k

)

. (5.40)

For times that are short compared to the field dynamics, t % ω−1
k , one

observes a Gaussian decay of the coherences. Modifications to this become
relevant at ωkt ∼= 1, provided χvac (t) is then still appreciable, i.e., for
4 |gk|2 /�2ω2

k % 1. Being a sum over periodic functions, χvac(t) is quasi-
periodic, that is, it will come back arbitrarily close to unity after a large
period (which increases exponentially with the number of modes). These
somewhat artificial Poincaré recurrences vanish if we replace the sum over
the discrete modes by an integral over a continuum with mode density μ,
4 In fact, the assumption ρtot (0) = ρ ⊗ ρE is quite unrealistic if the coupling is

strong, as discussed below. Nonetheless, it certainly represents a valid initial
state.
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∑

k

f(ωk) −→
∫ ∞

0

dωμ(ω)f(ω) , (5.41)

for any function f . This way the coupling constants gk get replaced by the
spectral density of the environment,

J(ω) = 4μ(ω) |g(ω)|2 . (5.42)

This function characterizes the environment by telling how effective the cou-
pling is at a certain frequency.

Thermal State

If the environment is in a thermal state with temperature T ,

ρE = ρth =
e−HE/kBT

tr
(
e−HE/kBT

) =
⊗

k

(
1− e−�ωk/kBT

) ∞∑

n=0

e−�ωkn/kBT |n〉〈n|k
︸ ︷︷ ︸

=ρ
(k)
th

,

(5.43)
the suppression factor reads5

χ(t) =
∏

k

tr
(
Dk(αk(t))ρ(k)

th

)
=
∏

k

exp

(

−|αk(t)|2

2
coth

(
�ωk

2kBT

))

.

(5.44)
This factor can be separated into its vacuum component (5.40) and a ther-
mal component, χ(t) = e−Fvac(t)e−Fth(t), with the following definitions of the
vacuum and the thermal decay functions:

Fvac(t) :=
∑

k

4 |gk|2
1− cos (ωkt)

�2ω2
k

, (5.45)

Fth(t) :=
∑

k

4 |gk|2
1− cos (ωkt)

�2ω2
k

(
coth

(
�ωk

2kBT

)
− 1

)
. (5.46)

5.2.2 The Continuum Limit

Assuming that the field modes are sufficiently dense we replace their sum by
an integration. Noting (5.41), (5.42) we have

5 This can be found in a small exercise by using the Baker–Hausdorff relation
with exp

(
αb† − α∗b

)
= exp(−|α|2/2) exp

(
αb†) exp (−α∗b), and the fact that

coherent states satisfy the eigenvalue equation b|β〉 = β|β〉, have the number
representation 〈n|β〉 = exp(−|β|2/2)βn/

√
n!, and form an over-complete set with

I = π−1
∫

d2β|β 〉〈β|.
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Fvac(t) −→
∫ ∞

0

dωJ(ω)
1− cos (ωt)

�2ω2
(5.47)

Fth(t) −→
∫ ∞

0

dωJ(ω)
1− cos(ωt)

�2ω2

(
coth

(
�ω

2kBT

)
− 1

)
. (5.48)

So far, the treatment was exact. To continue we have to specify the spectral
density in the continuum limit. A typical model takes g ∝ √

ω, so that the
spectral density of a d-dimensional field can be written as [17]

J(ω) = aω

(
ω

ωc

)d−1

e−ω/ωc (5.49)

with “damping strength” a > 0. Here, ωc is a characteristic frequency “cutoff”
where the coupling decreases rapidly, such as the Debye frequency in the case
of phonons.

Ohmic Coupling

For d = 1 the spectral density (5.49) increases linearly at small ω (“Ohmic
coupling”). One finds

Fvac(t) =
a

2�2
log(1 + ω2

c t
2) , (5.50)

which bears a strong ωc dependence. Evaluating the second integral requires
to assume that the cutoff ωc is large compared to the thermal energy, kT %
�ωc:

Fth(t) ' a

�2
log

(
sinh (t/tT)

t/tT

)
. (5.51)

Here tT = �/ (πkBT ) is a thermal quantum time scale. The corresponding
frequency ω1 = 2/tT is called the (first) Matsubara frequency , which also
shows up if imaginary time path integral techniques are used to treat the
influence of bosonic field couplings [17]. For large times the decay function
Fth(t) shows the asymptotic behavior

Fth(t) ∼ a

�2

t

tT
[as t→∞] . (5.52)

It follows that the decay of coherence is characterized by rather differ-
ent regimes. In the short-time regime (t < ω−1

c ) we have the perturbative
behavior

F (t) ' a

2�2
ω2

c t
2 [for t% ω−1

c ] , (5.53)

which can also be obtained from the short-time expansion of the time-
evolution operator. Note that the decay is here determined by the overall
width ωc of the spectral density. The intermediate region, ω−1

c < t < ω−1
1 , is

dominated by Fvac(t) and called the vacuum regime,
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F (t) ' a

�2
log (ωct) [for ω−1

c % t% ω−1
1 ] .

Beyond that, for large times the decay is dominated by the thermal suppres-
sion factor,

F (t) ' a

�2

t

tT
[for ω−1

1 % t] . (5.54)

In this thermal regime the decay shows the exponential behavior typical for
the Markovian master equations discussed below. Note that the decay rate
for this long-time behavior is determined by the low-frequency behavior of
the spectral density, characterized by the damping strength a in (5.49), and
is proportional to the temperature T .

Super-Ohmic Coupling

For d = 3, the case of a “super-Ohmic” bath, the integrals (5.47), (5.48) can
be calculated without approximation. We note only the long-time behavior
of the decay,

lim
t→∞

F (t) = 2a
(
kBT

�ωc

)2

ψ′
(

1 +
kBT

�ωc

)
<∞ . (5.55)

Here ψ (z) stands for the Digamma function, the logarithmic derivative of
the gamma function. Somewhat surprisingly, the coherences do not get com-
pletely reduced as t→∞, even at a finite temperature. This is due to the sup-
pressed influence of the important low-frequency contributions to the spectral
density in three dimensions (as compared to lower dimensions). While such
a suppression of decoherence is plausible for intermediate times, the limiting
behavior (5.55) is clearly a result of our simplified model assumptions. It will
be absent if there is a small anharmonic coupling between the bath modes
[18] or if there is a small admixture of different couplings to Hint.

Decoherence by “Vacuum Fluctuations”?

The foregoing discussion seems to indicate that the “vacuum fluctuations”
attributed to the quantized field modes are responsible for a general decoher-
ence process, which occurs at short-time scales even if the field is in its ground
state. This ground state is non-degenerate and the only way to change it is
to increase the energy of the field. But in our model the interaction Hamilto-
nian Hint commutes with the system Hamiltonian, so that it cannot describe
energy exchange between qubit and field. One would therefore expect that
after the interaction the field has the same energy as before, so that an initial
vacuum state remains unchanged and decoherence cannot take place.

This puzzle is resolved by noting that the initial state ρE =
⊗

k |0〉〈0|k
is an eigenstate only in the absence of the coupling Hint, but not of the
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total Hamiltonian. By starting with the product state ρtot(0) = ρ ⊗ ρE we
do not account for this possibly strong coupling. At an infinitesimally small
time later, system and field thus suddenly feel that they are coupled to each
other, which leads to a renormalization of their energies (as described by the
Lamb shift discussed in Sect. 5.4.1). The factor χvac in (5.40) describes the
“initial jolt” produced by this sudden switching on of the coupling.

It follows that the above treatment of the short-time dynamics, though
formally correct, does not give a physically reasonable picture if the system
state is prepared in the presence of the coupling. In this case, one should
rather work with the eigenstates of the total Hamiltonian, often denoted as
“dressed states”. If we start with a superposition of those two dressed states,
which correspond in the limit of vanishing coupling to the two system states
and the vacuum field, the resulting dynamics will show no further loss of
coherence. This is consistent with the above notion that at zero temperature
elastic processes cannot lead to decoherence [19].

5.2.3 Dephasing of N Qubits

Let us now discuss the generalization to the case of N qubits which do not
interact directly among each other. Each qubit may have a different coupling
to the bath modes. The system Hamiltonian is then

Htot =
N−1∑

j=0

�ωj

2
σ(j)

z +
∑

k

�ωkb†kbk

︸ ︷︷ ︸
H0

+
N−1∑

j=0

σ(j)
z

∑

k

(
g
(j)
k b†k + [g(j)

k ]∗bk

)
.

(5.56)
Similar to above, the time evolution in the interaction picture reads

Ũ(t) = eiϕ(t) exp

⎛

⎝1
2

N−1∑

j=0

σ(j)
z

∑

k

(
α

(j)
k b†k − [α(j)

k ]∗bk

)
⎞

⎠ ,

where the displacement of the field modes now depends on the N -qubit state.
As an example, we take N = 2 qubits and only a single vacuum mode.

For the initial qubit states

|φ〉 = c11| ↑↑〉+ c00| ↓↓〉 (5.57)

and

|ψ〉 = c10| ↑↓〉+ c01| ↓↑〉 , (5.58)

we obtain, respectively,

Ũ|φ〉|0〉E = c11| ↑↑〉|
α(1) (t) + α(2) (t)

2
〉E + c00| ↓↓〉|

−α(1) (t)− α(2) (t)
2

〉E ,
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and

Ũ|ψ〉|0〉E = c10| ↑↓〉|
α(1) (t)− α(2) (t)

2
〉E + c01| ↓↑〉|

−α(1) (t) + α(2) (t)
2

〉E ,

where the α(1) (t) and α(2) (t) are the field displacements (5.34) due to the
first and the second qubits.

If the couplings to the environment are equal for both qubits, say, because
they are all sitting in the same place and seeing the same field, we have
α(1) (t) = α(2) (t) ≡ α (t). In this case, states of the form |φ〉 are decohered
once the factor 〈α (t) | − α (t)〉E = exp(−2 |α (t)|2) is approximately zero.
States of the form |ψ〉, on the other hand, are not affected at all, and one
says that the {|ψ〉} span a (two-dimensional) decoherence-free subspace. It
shows up because the environment cannot tell the difference between the
states | ↑↓〉 and | ↓↑〉 if it couples only to the sum of the excitations.

For an arbitrary number of qubits, using an N -digit binary notation, e.g.,
| ↑↓↑〉 ≡ |1012〉 = |5〉, one has

〈m|ρ̃(t)|n〉 =〈m|ρ̃(0)|n〉

× tr

⎛

⎝exp

⎡

⎣
N−1∑

j=0

(mj − nj)
∑

k

(
α

(j)
k (t)b†k − [α(j)

k (t)]∗bk

)
⎤

⎦ ρth

⎞

⎠ ,

(5.59)

where mj ∈ {0, 1} indicates the jth digit in the binary representation of the
number m.

We can distinguish different limiting cases:

Qubits Feel the Same Reservoir

If the separation of the qubits is small compared to the wave lengths of the
field modes they are effectively interacting with the same reservoir, α(j)

k = αk.
One can push the j-summation to the α’s in this case, so that, compared to
the single qubit, one merely has to replace αk by

∑
(mj − nj)αk . We find

χmn(t) = exp

⎛

⎜
⎝−

∣∣∣∣∣∣

N−1∑

j=0

(mj − nj)

∣∣∣∣∣∣

2

(Fvac(t) + Fth(t))

⎞

⎟
⎠ (5.60)

with Fvac(t) and Fth(t) given by (5.47) and (5.48).
Hence, in the worst case, one observes an increase of the decay rate by

N2 compared to the single qubit rate. This is the case for the coherence
between the states |0〉 and |2N − 1〉, which have the maximum difference
in the number of excitations. On the other hand, the states with an equal
number of excitations form a decoherence-free subspace in the present model,
with a maximal dimension of

(
N

N/2

)
.
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Qubits See Different Reservoirs

In the other extreme, the qubits are so far apart from each other that each
field mode couples only to a single qubit. This suggests a renumbering of the
field modes,

α
(j)
k −→ αkj

,

and leads, after transforming the j-summation into a tensor product, to

χmn(t) =
N−1∏

j=0

tr

⎛

⎝
⊗

kj

Dkj

(
(mj − nj)αkj

(t)
)
ρ
(kj)
th

⎞

⎠

=
N−1∏

j=0

exp
(
−|mj − nj |2︸ ︷︷ ︸

=|mj−nj |

(Fvac(t) + Fth(t))
)

= exp

(

−
N−1∑

j=0

|mj − nj |

︸ ︷︷ ︸
Hamming distance

(Fvac(t) + Fth(t))

)

. (5.61)

Hence, the decay of coherence is the same for all pairs of states with the
same Hamming distance. In the worst case, we have an increase by a factor
of N compared to the single qubit case, and there are no decoherence-free
subspaces.

An intermediate case is obtained if the coupling depends on the position rj

of the qubits. A reasonable model, corresponding to point scatterings of fields
with wave vector k, is given by g

(j)
k = gk exp (ik · rj), and its implications

are studied in [20].
The model for decoherence discussed in this section is rather exceptional

in that the dynamics of the system can be calculated exactly for some choices
of the environmental spectral density. In general, one has to resort to approx-
imate descriptions for the dynamical effect of the environment; we turn to
this problem in the following section.

5.3 Markovian Dynamics of Open Quantum Systems

Isolated systems evolve, in the Schrödinger picture and for the general case
of mixed states, according to the von Neumann equation,

∂tρ =
1
i�

[H, ρ] . (5.62)

One would like to have a similar differential equation for the reduced dynam-
ics of an “open” quantum system, which is in contact with its environment.
If we extend the description to include the entire environment HE and its
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coupling to the system, then the total state in Htot = H ⊗HE evolves uni-
tarily. The partial trace over HE gives the evolved system state, and its time
derivative reads

∂tρ =
d
dt

trE
(
Utot(t)ρtot(0)U†

tot(t)
)

=
1
i�

trE ([Htot, ρtot]) . (5.63)

This exact equation is not closed and therefore not particularly helpful as it
stands. However, it can be used as the starting point to derive approximate
time-evolution equations for ρ, in particular, if it is permissible to take the
initial system state to be uncorrelated with the environment.

These equations are often non-local in time, though, in agreement with
causality, the change of the state at each point in time depends only on the
state evolution in the past. In this case, the evolution equation is called a
generalized master equation. It can be specified in terms of superoperator
functionals, i.e., linear operators which take the density operator ρ with its
past time evolution until time t and map it to the differential change of the
operator at that time,

∂tρ = K [{ρτ : τ < t}] . (5.64)

An interpretation of this dependence on the system’s past is that the en-
vironment has a memory, since it affects the system in a way which de-
pends on the history of the system environment interaction. One may hope
that on a coarse-grained time scale, which is large compared to the inter-
environmental correlation times, these memory effects might become irrel-
evant. In this case, a proper master equation might be appropriate, where
the infinitesimal change of ρ depends only on the instantaneous system state,
through a Liouville super operator L,

∂tρ = Lρ . (5.65)

Master equations of this type are also called Markovian, because of their
resemblance to the differential Chapman–Kolmogorov equation for a classical
Markov process. However, since a number of approximations are involved in
their derivation, it is not clear whether the corresponding time evolution
respects important properties of a quantum state, such as its positivity. We
will see that these constraints restrict the possible form of L rather strongly.

5.3.1 Quantum Dynamical Semigroups

The notion of a quantum dynamical semigroup permits a rigorous formulation
of the Markov assumption in quantum theory. To introduce it we first need
a number of concepts from the theory of open quantum systems [11, 21–23].

Dynamical Maps

A dynamical map is a one-parameter family of trace-preserving, convex linear,
and completely positive maps (CPM)
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Wt : ρ0 → ρt, for t ∈ R+
0 , (5.66)

satisfying W0 = id. As such, it yields the most general description of a time
evolution which maps an arbitrary initial state ρ0 to valid states at later
times.

Specifically, the condition of trace preservation guarantees the normaliza-
tion of the state,

tr (ρt) = 1 ,

and the convex linearity, i.e.,

Wt (λρ0 + (1− λ) ρ′0) = λWt (ρ0) + (1− λ)Wt (ρ′0) for all 0 � λ � 1 ,

ensures that the transformation of mixed states is consistent with the classical
notion of ignorance. The final requirement of complete positivity is stronger
than mere positivity of Wt (ρ0). It means that in addition all the tensor
product extensions of Wt to spaces of higher dimension, defined with the
identity map idext, are positive,

Wt ⊗ idext > 0 ,

that is, the image of any positive operator in the higher dimensional space
is again a positive operator. This guarantees that the system state remains
positive even if it is the reduced part of a non-separable state evolving in a
higher dimensional space.

Kraus Representation

Any dynamical map admits an operator-sum representation of the form (5.8)
[23],

Wt(ρ) =
N∑

k=1

Wk(t)ρW†
k(t) (5.67)

with the completeness relation6

N∑

k=1

W†
k(t)Wk(t) = I . (5.68)

The number of the required Kraus operators Wk(t) is limited by the dimen-
sion of the system Hilbert space, N � dim (H)2 (and confined to a count-
able set in case of an infinite-dimensional, separable Hilbert space), but their
choice is not unique.
6 In case of a trace-decreasing , convex linear, completely positive map the condition

(5.68) is replaced by
∑

k W†
k(t)Wk(t) < I, i.e., the operator I−

∑
k W†

k(t)Wk(t)
must be positive.
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Semigroup Assumption

We can now formulate the assumption that the {Wt : t ∈ R+
0 } form a con-

tinuous dynamical semigroup7 [21, 23]

Wt2 (Wt1(·))
!= Wt1+t2(·) for all t1, t2 > 0 (5.69)

and W0 = id. This statement is rather strong, and it is certainly violated
for truly microscopic times. But it seems not unreasonable on the level of
a coarse-grained time scale, which is long compared to the time it takes for
the environment to “forget” the past interactions with the system due to the
dispersion of correlations into the many environmental degrees of freedom.

For a given dynamical semigroup there exists, under rather weak condi-
tions, a generator, i.e., a superoperator L satisfying

Wt = eLt for t > 0 . (5.70)

In this case Wt(ρ) is the formal solution of the Markovian master equation
(5.65).

Dual Maps

So far we used the Schrödinger picture, i.e., the notion that the state of an
open quantum system evolves in time, ρt = Wt(ρ0). Like in the description
of closed quantum systems, one can also take the Heisenberg point of view,
where the state does not evolve, while the operators A describing observ-
ables acquire a time dependence. The corresponding map W�

t : A0 → At is
called the dual map, and it is related to Wt by the requirement tr(AWt(ρ)) =
tr(ρW�

t (A)). In case of a dynamical semigroup, W�
t = exp

(
L�t

)
, the equa-

tion of motion takes the form ∂tA = L�A, with the dual Liouville operator
determined by tr(AL (ρ)) = tr(ρL� (A)). From a mathematical point of view,
the Heisenberg picture is much more convenient since the observables form
an algebra, and it is therefore preferred in the mathematical literature.

5.3.2 The Lindblad Form

We can now derive the general form of the generator of a dynamical semi-
group, taking dim (H) = d <∞ for simplicity [2, 23]. The bounded operators
on H then form a d2-dimensional vector space which turns into a Hilbert
space, if equipped with the Hilbert–Schmidt scalar product (A,B) := tr(A†B).

Given an orthonormal basis of operators {Ej : 1 � j � d2} ⊂ L (H),

(Ei,Ej) := tr(E†
iEj) = δij , (5.71)

7 The inverse element required for a group structure is missing for general, irre-
versible CPMs.
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any Hilbert–Schmidt operator Wk can be expanded as

Wk =
d2
∑

j=1

(Ej ,Wk)Ej . (5.72)

We can choose one of the basis operators, say the d2th, to be proportional to
the identity operator,

Ed2 =
1√
d
I , (5.73)

so that all other basis elements are traceless,

tr(Ej) =

{
0 for j = 1, . . . , d2 − 1 ,√
d for j = d2 .

(5.74)

Representing the superoperator of the dynamical map (5.67) in the {Ej} basis
we have

Wt(ρ) =
d2
∑

i,j=1

cij(t)EiρE
†
j (5.75)

with a time-dependent, hermitian, and positive coefficient matrix,

cij(t) =
N∑

k=1

(Ei,Wk(t))(Ej ,Wk(t))∗ (5.76)

(positivity can be checked in a small calculation). We can now calculate the
semigroup generator in terms of the differential quotient by writing the terms
including the element Ed2 separately:

Lρ = lim
τ→0

Wτ (ρ)− ρ

τ

= lim
τ→0

1
dcd2d2(τ)− 1

τ︸ ︷︷ ︸
c0∈R

ρ+ lim
τ→0

d2−1∑

j=1

cjd2(τ)√
dτ

Ej

︸ ︷︷ ︸
B∈L(H)

ρ+ ρ lim
τ→0

d2−1∑

j=1

cd2j(τ)√
dτ

E†
j

︸ ︷︷ ︸
B†∈L(H)

+
d2−1∑

i,j=1

lim
τ→0

cij(τ)
τ︸ ︷︷ ︸

αij∈R

EiρE
†
j

= c0ρ+ Bρ+ ρB† +
d2−1∑

i,j=1

αijEiρE
†
j

=
1
i�

[H, ρ] +
1
�
(Gρ+ ρG) +

d2−1∑

i,j=1

αijEiρE
†
j . (5.77)



244 K. Hornberger

In the last equality the following hermitian operators with the dimension of
an energy were introduced:

G =
�

2
(B + B† + c0) ,

H =
�

2i
(B− B†) .

By observing that the conservation of the trace implies tr(Lρ) = 0, one can
relate the operator G to the matrix α = (αij), since

0 = tr(Lρ) = 0 + tr

⎡

⎣

⎛

⎝2G

�
+

d2−1∑

i,j=1

αijE
†
jEi

⎞

⎠ ρ

⎤

⎦

must hold for all ρ. It follows that

G = −�

2

d2−1∑

i,j=1

αijE
†
jEi .

This leads to the first standard form for the generator of a dynamical semi-
group:

Lρ =
1
i�

[H, ρ]
︸ ︷︷ ︸

unitary part

+
d2−1∑

i,j=1

αij

(
EiρE

†
j −

1
2
E†

jEiρ−
1
2
ρE†

jEi

)

︸ ︷︷ ︸
incoherent part

. (5.78)

The complex coefficients αij have dimensions of frequency and constitute a
positive matrix α.

The second standard form or Lindblad form is obtained by diagonaliz-
ing the coefficient matrix α. The corresponding unitary matrix U satisfying
UαU † = diag(γ1, . . . , γd2−1) allows to define the dimensionless operators
Lk :=

∑d2−1
j=1 EjU

†
jk so that Ej =

∑d2−1
k=1 LkUkj and therefore8

Lρ =
1
i�

[H, ρ] +
N∑

k=1

γk

(
LkρL

†
k −

1
2
L†

kLkρ−
1
2
ρL†

kLk

)
(5.79)

8 It is easy to see that the dual Liouville operator discussed in Sect. 5.3.1 reads,
in Lindblad form,

L� (A) =
1

i�
[A, H] +

N∑

k=1

γk

(
L†

kALk − 1

2
L†

kLkA − 1

2
AL†

kLk

)
.

Note that this implies L� (I) = 0, while L (I) =
∑

k γk[Lk, L†
k], and tr (LX) = 0.
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with N � d2 − 1. This shows that the general form of a generator of a
dynamical semigroup is specified by a single hermitian operator H, which is
not necessarily equal to the Hamiltonian of the isolated system, see below,
and at most d2 − 1 arbitrary operators Lk with attributed positive rates γk.
These are called Lindblad operators9 or jump operators, a name motivated
in the following section.

It is important to note that a given generator L does not determine the
jump operators uniquely. In fact, the equation is invariant under the trans-
formation

Lk → Lk + ck , (5.80)

H → H +
�

2i

∑

j

γj

(
c∗jLj − cjL

†
j

)
, (5.81)

with ck ∈ C, so that the Lk can be chosen traceless. In this case, the only
remaining freedom is a unitary mixing,

√
γiLi −→

∑

j

U ′
ij
√
γjLj . (5.82)

If L shows an additional invariance, e.g., with respect to rotations or trans-
lations, the form of the Lindblad operators will be further restricted, see,
e.g., [24].

5.3.3 Quantum Trajectories

Generally, if we write the Liouville superoperator L as the sum of two parts,
L0 and S, then the formal solution (5.70) of the master equation (5.65) can
be expressed as

Wt = e(L0+S)t =
∞∑

n=0

tn

n!
(L0 + S)n

=
∞∑

n=0

∞∑

k0,...,kn=0

tn+
∑

j kj

(
n+

∑
j kj

)
!
Lkn

0 SLkn−1
0 S · · · SLk1

0 SLk0
0︸ ︷︷ ︸

ntimes

=
∞∑

n=0

∫ t

0

dtn
∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1

×
∞∑

k0,...,kn=0

(t− tn)kn

kn!
(tn − tn−1)

kn−1

kn−1!
· · · (t1 − 0)k0

k0!

9 Lindblad showed in 1976 that the form (5.79) is obtained even for infinite-
dimensional systems provided the generator L is bounded (which is usually not
the case).
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×Lkn
0 SLkn−1

0 S · · · SLk1
0 SLk0

0

= eL0t +
∞∑

n=1

∫ t

0

dtn
∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1

×eL0(t−tn)SeL0(tn−tn−1)S · · · eL0(t2−t1)SeL0t1 . (5.83)

The step from the second to the third line, where tn+
∑

j kj /(n +
∑

j kj)! is
replaced by n time integrals, can be checked by induction.

The form (5.83) is a generalized Dyson expansion, and the comparison
with the Dyson series for unitary evolutions suggests to view exp (L0τ) as
an “unperturbed” evolution and S as a “perturbation”, such that the exact
time-evolution Wt is obtained by an integration over all iterations of the
perturbation, separated by the unperturbed evolutions.

The particular Lindblad form (5.79) of the generator suggests to introduce
the completely positive jump superoperators

Lkρ = γkLkρL
†
k , (5.84)

along with the non-hermitian operator

HC = H− i�
2

N∑

k=1

γkL†
kLk . (5.85)

The latter has a negative imaginary part, Im (HC) < 0, and can be used to
construct

L0ρ =
1
i�

(
HCρ− ρH†

C

)
. (5.86)

It follows that the sum of these superoperators yields the Liouville operator
(5.79)

L = L0 +
N∑

k=1

Lk . (5.87)

Of course, neither L0 nor S =
∑N

k=1 Lk generates a dynamical semigroup.
Nonetheless, they are useful since the interpretation of (5.83) can now be
taken one step further. We can take the point of view that the Lk with k � 1
describe elementary transformation events due to the environment (“jumps”),
which occur at random times with a rate γk. A particular realization of n
such events is specified by a sequence of the form

Rt
n = (t1, k1; t2, k2; . . . .; tn, kn) . (5.88)

The attributed times satisfy 0 < t1 < . . . . < tn < t, and the kj ∈ {1, . . . , N}
indicates which kind of event “took place”. We call Rt

n a record of length n.
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The general time-evolution Wt can thus be written as an integration over
all possible realizations of the jumps, with the “free” evolution exp (L0τ) in
between,

Wt = eL0t +
∞∑

n=1

∫ t

0

dtn
∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1

×
∑

{Rn}
eL0(t−tn)Lkn

eL0(tn−tn−1)Lkn−1 · · · eL0(t2−t1)Lk1e
L0t1

︸ ︷︷ ︸
KRt

n

(5.89)

As a result of the negative imaginary part in (5.85) the exp (L0τ) are trace
decreasing10 completely positive maps,

eL0τρ = exp
(
− iτ

�
HC

)
ρ exp

(
iτ

�
H†

C

)
> 0 , (5.90)

d
dτ

tr
(
eL0τρ

)
= tr

(
L0eL0τρ

)
= −

N∑

k=1

tr(LkeL0τ

︸ ︷︷ ︸
>0

ρ) < 0 . (5.91)

It is now natural to interpret tr
(
eL0tρ

)
as the probability that no jump occurs

during the time interval t,

Prob
(
Rt

0|ρ
)

:= tr
(
eL0tρ

)
. (5.92)

To see that this makes sense, we attribute to each record of length n a n-time
probability density. For a given record Rt

n we define

prob
(
Rt

n|ρ
)

:= tr
(
KRt

n
ρ
)
, (5.93)

in terms of the superoperators from the second line in (5.89),

KRt
n

:= eL0(t−tn)Lkn
eL0(tn−tn−1)Lkn−1 · · · eL0(t2−t1)Lk1e

L0t1 . (5.94)

This is reasonable since the KRt
n

are completely positive maps that do not
preserve the trace. Indeed, the probability density for a record is thus de-
termined both by the corresponding jump operators, which involve the rates
γk, and by the eL0τρ, which account for the fact that the likelihood for the
absence of a jump decreases with the length of the time interval.

This notion of probabilities is consistent, as can be seen by adding the
probability (5.92) for no jump to occur during the interval (0; t) to the inte-
gral over the probability densities (5.93) of all possible jump sequences. As
required, the result is unity,

Prob
(
Rt

0|ρ
)

+
∞∑

n=1

∫ t

0

dtn
∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1
∑

{Rt
n}

prob
(
Rt

n|ρ
)

= 1,

10 See the note 6.
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for all ρ and t � 0. This follows immediately from the trace preservation of
the map (5.89).

It is now natural to normalize the transformation defined by the KRt
n
.

Formally, this yields the state transformation conditioned to a certain record
Rt

n. It is called a quantum trajectory ,

T
(
ρ|Rt

n

)
:=

KRt
n
ρ

tr
(
KRt

n
ρ
) . (5.95)

Note that this definition comprises the trajectory corresponding to a null-
record Rt

0, where KRt
0

= exp (L0t). These completely positive, trace-pre-
serving, nonlinear maps ρ → T (ρ|Rt

n) are defined for all states ρ that yield
a finite probability (density) for the given record Rt

n, i.e., if the denominator
in (5.95) does not vanish.

Using these notions, the exact solution of a general Lindblad master equa-
tion (5.83) may thus be rewritten in the form

ρt = Prob
(
Rt

0

)
T
(
ρ|Rt

0

)

+
∞∑

n=1

∫ t

0

dtn
∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1
∑

{Rn}
prob

(
Rt

n|ρ
)
T
(
ρ|Rt

n

)
.

(5.96)

It shows that the general Markovian quantum dynamics can be understood
as a summation over all quantum trajectories T (ρ|Rt

n) weighted by their
probability (density). This is called a stochastic unraveling of the master
equation. The set of trajectories and their weights are labeled by the possi-
ble records (5.88) and determined by the Lindblad operators of the master
equation (5.79).

The semigroup property described by the master equation shows up if a
record is formed by joining the records of adjoining time intervals, (0; t′) and
(t′; t),

R
(0;t)
n+m := (R(0;t′)

n ;R(t′;t)
m ) . (5.97)

As one expects, the probabilities and trajectories satisfy

prob(R(0;t)
n+m|ρ) = prob(R(0;t′)

n |ρ) prob(R(t′;t)
m |T (ρ|R(0;t′)

n )) , (5.98)

and

T (ρ|R(0;t)
n+m) = T (T (ρ|R(0;t′)

n )|R(t′;t)
m ) . (5.99)

Note finally that the concept of quantum trajectories fits seamlessly into
the framework of generalized measurements discussed in Sect. 5.1.3. In par-
ticular, the conditioned state transformation T (ρ|Rt

n) has the form (5.18) of
an efficient measurement transformation,



5 Introduction to Decoherence Theory 249

T
(
ρ|Rt

n

)
=

MRt
n
ρM†

Rt
n

tr
(
M†

Rt
n
MRt

n
ρ
) (5.100)

with compound measurement operators

MRt
n

:= e−iHC (t−tn)/�Lkn
· · · Lk2e

−iHC (t2−t1)/�Lk1e
−iHC t1/� . (5.101)

This shows that we can legitimately view the open quantum dynamics gen-
erated by L as due to the continuous monitoring of the system by the en-
vironment. We just have to identify the (aptly named) record Rt

n with the
total outcome of a hypothetical, continuous measurement during the interval
(0; t). The jump operators Lk then describe the effects of the corresponding
elementary measurement events11 (“clicks of counter k”). Since the absence
of any click during the “waiting time” τ may also confer information about
the system, this lack of an event constitutes a measurement as well, which is
described by the non-unitary operators exp (−iHCτ/�). A hypothetical de-
mon, who has the full record Rt

n available, would then be able to predict the
final state T (ρ|Rt

n). In the absence of this information we have to resort to
the probabilistic description (5.96) weighting each quantum trajectory with
its (Bayesian) probability.

We can thus conclude that the dynamics of open quantum dynamics, and
therefore decoherence, can in principle be understood in terms of an informa-
tion transfer to the environment. Apart from this conceptual insight, the un-
raveling of a master equation provides also an efficient stochastic simulation
method for its numerical integration. In these quantum jump approaches [25–
27], which are based on the observation that the quantum trajectory (5.95) of
a pure state remains pure, one generates a finite ensemble of trajectories such
that the ensemble mean approximates the solution of the master equation.

5.3.4 Exemplary Master Equations

Let us take a look at a number of very simple Markovian master equations,12

which are characterized by a single Lindblad operator L (together with a her-
mitian operator H). The first example gives a general description of dephas-
ing, while the others are empirically known to describe dissipative phenomena
realistically. We may then ask what they predict about decoherence.

11 For all these appealing notions, it should be kept in mind that the Lk are not
uniquely specified by a given generator L, see (5.80), (5.81) and (5.82). Different
choices of the Lindblad operators lead to different unravelings of the master
equation, so that these hypothetical measurement events must not be viewed as
“real” processes.

12 See also Sect. 6.2.2 in Cord Müller’s contribution for a discussion of the master
equation describing spin relaxation.
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Dephasing

The simplest choice is to take the Lindblad operator to be proportional13 to
the Hamiltonian of a discrete quantum system, i.e., to the generator of the
unitary dynamics, L =

√
γH. The Lindblad equation

∂tρt =
1
i�

[H, ρt] + γ

(
HρtH− 1

2
H2ρt −

1
2
ρtH

2

)
(5.102)

is immediately solved in the energy eigenbasis, H =
∑

m Em|m〉〈m| :

ρmn(t) ≡ 〈m|ρt|n〉 = ρmn(0) exp
(
− i

�
(Em − En)t− γ

2
(Em − En)2t

)
.

(5.103)
As we expect from the discussion of qubit dephasing in Sect. 5.2, the energy
eigenstates are unaffected by the non-unitary dynamics if the environmental
effect commutes with H. The coherences show the exponential decay that we
found in the “thermal regime” (of times t which are long compared to the
inverse Matsubara frequency). The comparison with (5.54) indicates that γ
should be proportional to the temperature of the environment.

Amplitude Damping of the Harmonic Oscillator

Next, we choose H to be the Hamiltonian of a harmonic oscillator, H = �ωa†a,
and take as Lindblad operator the ladder operator, L = a. The resulting
Lindblad equation is known empirically to describe the quantum dynamics
of a damped harmonic oscillator.

Choosing as initial state a coherent state, see (5.37) and (5.114) below,

ρ0 = |α0〉〈α0| ≡ D(α0)|0〉〈0|D†(α0)

= e−|α0|2e xp(α0a
†)|0〉〈0| exp (α∗

0a) , (5.104)

we are faced with the exceptional fact that the state remains pure during
the Lindblad time evolution. Indeed, the solution of the Lindblad equation
reads,

ρt = |αt〉〈αt| (5.105)

with
αt = α0 exp

(
−iωt− γ

2
t
)
, (5.106)

as can be verified easily using (5.104). It describes how the coherent state
spirals in phase space toward the origin, approaching the ground state as
t → ∞. The rate γ is the dissipation rate since it quantifies the energy loss,
as shown by the time dependence of the energy expectation value,

〈αt|H|αt〉 = e−γt〈α0|H|α0〉 . (5.107)
13 As an exception, γ does not have the dimensions of a rate here (to avoid clumsy

notation).
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Superposition of Coherent States

What happens if we start out with a superposition of coherent states,

|ψ0〉 =
1√
N

(|α0〉+ |β0〉) (5.108)

with N = 2 + 2Re〈α0|β0〉, in particular, if the separation in phase space is
large compared to the quantum uncertainties, |α0 − β0| ( 1 ? The initial
density operator corresponding to (5.108) reads

ρ0 =
1
N (|α0〉〈α0|+ |β0〉〈β0|+ c0|α0〉〈β0|+ c∗0|β0〉〈α0|) (5.109)

with c0 = 1. One finds that the ansatz,

ρt =
1
N (|αt〉〈αt|+ |βt〉〈βt|+ ct|αt〉〈βt|+ c∗t |βt〉〈αt|) , (5.110)

solves the Lindblad equation with (5.106), provided

ct = c0 exp
([
−1

2
|α0 − β0|2 + i Im(α0β

∗
0)
] (

1− e−γt
))

. (5.111)

That is, while the coherent “basis” states have the same time evolution as
in (5.105), the initial coherence c0 gets additionally suppressed. For times
that are short compared to the dissipative time scale, t % γ−1, we have an
exponential decay

|ct| = |c0| exp
(
− γ

2
|α0 − β0|2

︸ ︷︷ ︸
γdeco

t
)
, (5.112)

with a rate γdeco. For macroscopically distinct superpositions, where the
phase space distance of the quantum states is much larger than their un-
certainties, |α0 − β0| ( 1, the decoherence rate γdeco can be much greater
than the dissipation rate,

γdeco

γ
=

1
2
|α0 − β0|2 ( 1 . (5.113)

This quadratic increase of the decoherence rate with the separation between
the coherent states has been confirmed experimentally in a series of beautiful
cavity QED experiments in Paris, using field states with an average of 5–9
photons [28, 29].

Given this empiric support we can ask about the prediction for a material,
macroscopic oscillator. As an example, we take a pendulum with a mass of
m =100 g and a period of 2π/ω = 1 s and assume that we can prepare it in
a superposition of coherent states with a separation of x =1 cm. The mode
variable α is related to position and momentum by

α =
√
mω

2�

(
x+ i

p

mω

)
, (5.114)
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so that we get the prediction

γdeco ' 1030γ .

This purports that even with an oscillator of enormously low friction corre-
sponding to a dissipation rate of γ =1/year the coherence is lost on a time
scale of 10−22 s – in which light travels the distance of about a nuclear diam-
eter.

This observation is often evoked to explain the absence of macroscopic su-
perpositions. However, it seems unreasonable to assume that anything physi-
cally relevant takes place on a time scale at which a signal travels at most by
the diameter of an atomic nucleus. Rather, one expects that the decoherence
rate should saturate at a finite value if one increases the phase space distance
between the superposed states.

Quantum Brownian Motion

Next, let us consider a particle in one dimension. A possible choice for the
Lindblad operator is a linear combination of its position and momentum
operators,

L =
pth

�
x +

i
pth

p . (5.115)

Here pth is a momentum scale, which will be related to the temperature of the
environment below. The hermitian operator is taken to be the Hamiltonian of
a particle in a potential V (x), plus a term due to the environmental coupling,

H =
p2

2m
+ V (x) +

γ

2
(xp + px) . (5.116)

This additional term will be justified by the fact that the resulting Lindblad
equation is almost equal to the Caldeira–Leggett master equation. The latter
is the high-temperature limit of the exact evolution equation following from
a harmonic bath model of the environment [30, 31], see Sect. 5.4.1. It is
empirically known to describe the frictional quantum dynamics of a Brownian
particle, and, in particular, for t → ∞ it leads to the canonical Gibbs state
in case of quadratic potentials.

The choices (5.115) and (5.116) yield the following Lindblad equation:

∂tρt =

Caldeira–Leggett master equation
︷ ︸︸ ︷
1
i�

[
p2

2m
+ V (x), ρt] +

γ

i�
[x, pρt + ρtp]

︸ ︷︷ ︸
dissipation

−γ
2
p2
th

�2
[x, [x, ρt]]

︸ ︷︷ ︸
position localization

−γ
2

1
p2
th

[p, [p, ρt]] . (5.117)
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The three terms in the upper line [with pth from (5.123)] constitute the
Caldeira–Leggett master equation. It is a Markovian, but not a completely
positive master equation. In a sense, the last term in (5.117) adds the minimal
modification required to bring the Caldeira–Leggett master equation into
Lindblad form [2, 32].

To see the most important properties of (5.117) let us take a look at
the time evolution of the relevant observables in the Heisenberg picture. As
discussed in Sect. 5.3.1, the Heisenberg equations of motion are determined
by the dual Liouville operator L�. In the present case, it takes the form

L� (A) =
1
i�

[A,
p2

2m
+ V (x)]− γ

i�
(p [x,A] + [x,A] p)− γ

2
p2
th

�2
[x, [x,A]]

−γ
2

1
p2
th

[p, [p,A]] . (5.118)

It is now easy to see that

L� (x) =
p

m
,

L� (p) = −V ′(x)− 2γp . (5.119)

Hence, the force arising from the potential is complemented by a frictional
force which will drive the particle into thermal equilibrium. The fact that
this frictional component stems from the second term in (5.117) indicates
that the latter describes the dissipative effect of the environment.

In the absence of an external potential, V = 0, the time evolution deter-
mined by (5.119) is easily obtained, since

(
L�
)n (p) = (−2γ)n p for n ∈ N:

pt = eL
�tp =

∞∑

n=0

(−2γt)n

n!
p = e−2γtp

xt = eL
�tx = x +

1
m

∞∑

n=1

tn

n!
(
L�
)n−1

(p) = x +
p− pt

2γm

[forV = 0] .

(5.120)
Note that, unlike in closed systems, the Heisenberg operators do not retain
their commutator, [xt, pt] �= i� for t > 0 (since the map W�

t = exp
(
L�t

)
is

non-unitary). Similarly, (p2)t �= (pt)
2 for t > 0, so that the kinetic energy

operator T = p2/2m has to be calculated separately. Noting

L� (T) = γ
p2
th

2m
− 4γT [forV = 0] , (5.121)

we find

Tt =
p2
th

8m
+
(

T− p2
th

8m

)
e−4γt [forV = 0] . (5.122)
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This shows how the kinetic energy approaches a constant determined by the
momentum scale pth. We can now relate pth to a temperature by equating
the stationary expectation value tr (ρT∞) = p2

th/8m with the average kinetic
energy 1

2kBT in a one-dimensional thermal distribution. This leads to

pth = 2
√
mkBT (5.123)

for the momentum scale in (5.115). Usually, one is not able to state the
operator evolution in closed form. In those cases it may be helpful to take
a look at the Ehrenfest equations for their expectation values. For example,
given 〈p2〉t = 2m〈T〉t, the other second moments, 〈x2〉t and 〈px+ xp〉t form a
closed set of differential equations. Their solutions, given in [2], yield the time
evolution of the position variance σ2

x (t) = 〈x2〉t − 〈x〉2t . It has the asymptotic
form

σ2
x (t) ∼ kBT

mγ
t as t→∞ , (5.124)

which shows the diffusive behavior expected of a (classical) Brownian parti-
cle.14

Let us finally take a closer look at the physical meaning of the third term
in (5.117), which is dominant if the state is in a superposition of spatially
separated states. Back in the Schrödinger picture we have in position repre-
sentation, ρt(x, x′) = 〈x|ρt|x′〉,

∂tρt(x, x′) = −γ
2
p2
th

�2
(x− x′)2

︸ ︷︷ ︸
γdeco

ρt(x, x′) + [the other terms] . (5.125)

The “diagonal elements” ρ (x, x) are unaffected by this term, so that it leaves
the particle density invariant. The coherences in position representation, on
the other hand, get exponentially suppressed,

ρt(x, x′) = exp (−γdecot) ρ0(x, x′) . (5.126)

Again the decoherence rate is determined by the square of the relevant dis-
tance |x− x′|,

γdeco

γ
= 4π

(x− x′)2

Λ2
th

. (5.127)

Like in Sect. 5.3.4, the rate γdeco will be much larger than the dissipative
rate provided the distance is large on the quantum scale, here given by the
thermal de Broglie wavelength

Λ2
th =

2π�
2

mkBT
. (5.128)

14 Note that the definition of γ differs by a factor of 2 in part of the literature.
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In particular, one finds γdeco ≫ γ if the separation is truly macroscopic.
Again, it seems unphysical that the decoherence rate does not saturate as
|x−x′| → ∞, but grows above all bounds. One might conclude from this that
non-Markovian master equations are more appropriate on these short time
scales. However, I will argue that (unless the environment has very special
properties) Markovian master equations are well suited to study decoherence
processes, provided they involve an appropriate description of the microscopic
dynamics.

5.4 Microscopic Derivations

In this section we discuss two important and rather different strategies to
obtain Markovian master equations based on microscopic considerations.

5.4.1 The Weak Coupling Formulation

The most widely used form of incorporating the environment is the weak
coupling approach. Here one assumes that the total Hamiltonian is “known”
microscopically, usually in terms of a simplified model,

Htot = H + HE + Hint

and takes the interaction part Hint to be “weak” so that a perturbative treat-
ment of the interaction is permissible.

The main assumption, called the Born approximation, states that Hint

is sufficiently small so that we can take the total state as factorized, both
initially, ρtot(0) = ρ(0) ⊗ ρE, and also at t > 0 in those terms which involve
Hint to second order.

Assumption 1 : ρtot(t) ' ρ(t)⊗ ρE [to second order in Hint] . (5.129)

Here ρE is the stationary state of the environment, [HE, ρE] = 0. Like above,
the use of the interaction picture is indicated with a tilde, cf. (5.28), so that
the von Neumann equation for the total system reads

∂tρ̃tot =
1
i�

[H̃int(t), ρ̃tot(t)]

=
1
i�

[H̃int(t), ρ̃tot(0)] +
1

(i�)2

∫ t

0

ds [H̃int(t), [H̃int(s), ρ̃tot(s)]] .

(5.130)

In the second equation, which is still exact, the von Neumann equation in
its integral version was inserted into the differential equation version. Using
a basis of Hilbert–Schmidt operators of the product Hilbert space, see Sect.
5.3.2, one can decompose the general H̃int into the form
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H̃int(t) =
∑

k

Ãk(t)⊗ B̃k(t) (5.131)

with Ãk = Ã†
k, B̃k = B̃†

k. The first approximation is now to replace ρ̃tot(s) by
ρ̃(s)⊗ ρE in the double commutator of (5.130), where H̃int appears to second
order. Performing the trace over the environment one gets

∂tρ̃(t) = trE(∂tρ̃tot)

∼= 1
i�

∑

k

〈B̃k(t)〉ρE [Ãk(t), ρ̃(0)]

+
1

(i�)2
∑

k�

{∫ t

0

ds 〈B̃k(t)B̃�(s)〉ρE︸ ︷︷ ︸
Ck�(t−s)

{Ãk(t)Ã�(s)ρ̃(s)− Ã�(s)ρ̃(s)Ãk(t)}

+ h.c.
}
. (5.132)

All the relevant properties of the environment are now expressed in terms of
the (complex) bath correlation functions Ck�(t− s). Since [HE, ρE] = 0, they
depend only on the time difference t− s,

Ck�(τ) = tr
(
eiHEτBke−iHEτB�ρE

)
≡
〈
eiHEτBke−iHEτB�

〉
ρE

. (5.133)

This function is determined by the environmental state alone, and it is typi-
cally appreciable only for a small range of τ around τ = 0.

Equation (5.132) has the closed form of a generalized master equation,
but it is non-local in time, i.e., non-Markovian. Viewing the second term as
a superoperator K, which depends essentially on t− s we have

∂tρ̃(t) =
1
i�

[〈H̃int(t)〉ρE , ρ̃(0)]
︸ ︷︷ ︸

disregarded

+
∫ t

0

dsK(t− s)ρ̃(s) , (5.134)

where K is a superoperator memory kernel of the form (5.64). We may disre-
gard the first term since the model Hamiltonian HE can always be reformu-
lated such that 〈B̃k(t)〉ρE = 0.

A naive application of second order of perturbation theory would now
replace ρ̃(s) by the initial ρ̃(0). However, since the memory kernel is dominant
at the origin it is much more reasonable to replace ρ̃(s) by ρ̃(t). The resulting
master equation is local in time,

∂tρ̃(t) ∼= 0 +
(∫ t

0

dsK(t− s)
)
ρ̃(t) . (5.135)

It is called the Redfield equation and it is not Markovian, because the inte-
grated superoperator still depends on time. Since the kernel is appreciable
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only at the origin it is reasonable to replace t in the upper integration limit
by ∞.

These steps are summarized by the Born–Markov approximation:

Assumption 2 :
∫ t

0

dsK(t− s)ρ̃ (s) ∼=
∫ ∞

0

dsK(s)ρ̃ (t) . (5.136)

It leads from (5.134) to a Markovian master equation provided 〈Hint〉ρE
= 0.

However, by no means is such a master equation guaranteed to be com-
pletely positive. An example is the Caldeira–Leggett master equation dis-
cussed in Sect. 5.3.4. It can be derived by taking the environment to be a
bath of bosonic field modes whose field amplitude is coupled linearly to the
particle’s position operator. A model assumption on the spectral density of
the coupling then leads to the frictional behavior of (5.119) [17, 30].

A completely positive master equation can be obtained by a further sim-
plification, the “secular” approximation, which is applicable if the system
Hamiltonian H has a discrete, non-degenerate spectrum. The system opera-
tors Ak can then be decomposed in the system energy eigenbasis. Combining
the contributions with equal energy differences

Ak(ω) =
∑

E′−E=�ω

〈E|Ak|E′〉|E〉〈E′| = A†
k(ω) , (5.137)

we have

Ak =
∑

ω

Ak(ω) . (5.138)

The time dependence of the operators in the interaction picture is now par-
ticularly simple,

Ãk(t) =
∑

ω

e−iωtAk(ω) . (5.139)

Inserting this decomposition we find

∂tρ̃(t) =
∑

k�

∑

ωω′

ei(ω−ω′)tΓk�(ω′){A�(ω′)ρ̃(t)A†
k(ω)− A†

k(ω)A�(ω′)ρ̃(t)}+ h.c.

(5.140)

with
Γk�(ω) =

1
�2

∫ ∞

0

dseiωs〈B̃k(s)B�(0)〉ρE . (5.141)

For times t which are large compared to the time scale given by the smallest
system energy spacings it is reasonable to expect that only equal pairs of
frequencies ω, ω′ contribute appreciably to the sum in (5.140), since all other
contributions are averaged out by the wildly oscillating phase factor. This
constitutes the rotating wave approximation, our third assumption
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Assumption 3 :
∑

ωω′

ei(ω−ω′)tf(ω, ω′) '
∑

ω

f(ω, ω) . (5.142)

It is now useful to rewrite

Γk�(ω) =
1
2
γk�(ω) + iSk�(ω) (5.143)

with γk�(ω) given by the full Fourier transform of the bath correlation func-
tion,

γk�(ω) = Γk�(ω) + Γ ∗
�k(ω) =

1
�2

∫ ∞

−∞
dt eiωt

〈
B̃k(t)B�(0)

〉

ρE

, (5.144)

and the hermitian matrix Sk�(ω) defined by

Sk�(ω) =
1
2i

(Γk�(ω)− Γ ∗
�k(ω)) . (5.145)

The matrix γk�(ω) is positive15 so that we end up with a master equation of
the first Lindblad form (5.78),

∂tρ̃(t) =
1
i�

[HLamb, ρ̃(t)] +
∑

k�ω

γk�(ω)
(

A�(ω)ρ̃(t)A†
k(ω)

− 1
2
A†

k(ω)A�(ω)ρ̃(t)− 1
2
ρ̃(t)A†

k(ω)A�(ω)
)
. (5.147)

The hermitian operator

HLamb = �

∑

k�ω

Sk�(ω)A†
k(ω)A�(ω) (5.148)

15 To see that the matrix (γ (ω))k,� ≡ γk�(ω) is positive we write

(v, γv) =
∑

k�

v∗
k γk�(ω)v�

=
1

�2

∫
dteiωt

∑

k�

〈
eiHEt/�Bk(0)v∗

ke−iHEt/�B�(0)v�

〉

ρE

=

∫
dteiωt

〈
eiHEt/�C†e−iHEt/�C

〉

ρE

(5.146)

with C := �
−1∑

� v�B�(0). One can now check that due to its particular form
the correlation function

f (t) =
〈
eiHEt/�C†e−iHEt/�C

〉

ρE

appearing in (5.146) is of positive type, meaning that the n × n matrices
(f (ti − tj))ij defined by an arbitrary choice of t1, . . . ., tn and n ∈ N are positive.
According to Bochner’s theorem [33] the Fourier transform of a function which
is of positive type is positive, which proves the positivity of (5.146).
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describes a renormalization of the system energies due to the coupling with
the environment, the Lamb shift . Indeed, one finds [H,HLamb] = 0.

Reviewing the three approximations (5.129), (5.136), (5.142) in view of
the decoherence problem one comes to the conclusion that they all seem to
be well justified if the environment is generic and the coupling is sufficiently
weak. Hence, the master equation should be alright for times beyond the
short-time transient which is introduced due to the choice of a product state
as initial state. Evidently, the problem of non-saturating decoherence rates
encountered in Sect. 5.3.4 is rather due to the linear coupling assumption,
corresponding to a “dipole approximation”, which is clearly invalid once the
system states are separated by a larger distance than the wavelength of the
environmental field modes.

This shows the need to incorporate realistic, nonlinear environmental cou-
plings with a finite range. A convenient way of deriving such master equations
is discussed in the next section.

5.4.2 The Monitoring Approach

The following method to derive microscopic master equations differs consid-
erably from the weak coupling treatment discussed above. It is not based
on postulating an approximate “total” Hamiltonian of system plus environ-
ment, but on two operators, which can be characterized individually in an
operational sense. This permits to describe the environmental coupling in
a non-perturbative fashion and to incorporate the Markov assumption right
from the beginning, rather than introducing it in the course of the calculation.

The approach may be motivated by the observation made in Sects. 5.1.3
and 5.3.3 that environmental decoherence can be understood as due to the
information transfer from the system to the environment occurring in a se-
quence of indirect measurements. In accordance with this, we will picture
the environment as monitoring the system continuously by sending probe
particles which scatter off the system at random times. This notion will be
applicable whenever the interaction with the environment can reasonably
be described in terms of individual interaction events or “collisions”, and it
suggests a formulation in terms of scattering theory, like in Sect. 5.1.2. The
Markov assumption is then easily incorporated by disregarding the change of
the environmental state after each collision [34].

When setting up a differential equation, one would like to write the tem-
poral change of the system as the rate of collisions multiplied by the state
transformation due to an individual scattering. However, in general not only
the transformed state will depend on the original system state but also the
collision rate, so that such a naive ansatz would yield a nonlinear equation,
violating the basic principles of quantum mechanics. To account for this state
dependence of the collision rate in a proper way we will apply the concept
of generalized measurements discussed in Sect. 5.1.3. Specifically, we shall
assume that the system is surrounded by a hypothetical, minimally invasive
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Fig. 5.1. (a) In the monitoring approach the system is taken to interact at most
with one environmental (quasi-)particle at a time, so that three-body collisions
are excluded. Moreover, in agreement with the Markov assumption, it is assumed
that the environmental particles disperse their correlation with the system before
scattering again. (b) In order to consistently incorporate the state dependence of
the collision rate into the dynamic description of the scattering process, we imagine
that the system is monitored continuously by a transit detector, which tells at a
temporal resolution Δt whether a particle is going to scatter off the system, or not

detector, which tells at any instant whether a probe particle has passed by
and is going to scatter off the system, see Fig. 5.1.

The rate of collisions is then described by a positive operator Γ acting in
the system-probe Hilbert space. Given the uncorrelated state �tot = ρ⊗ ρE ,
it determines the probability of a collision to occur in a small time interval
Δt,

Prob (CΔt|ρ⊗ ρE) = Δt tr (Γ [ρ⊗ ρE ]) . (5.149)

Here, ρE is the stationary reduced single particle state of the environment.
The microscopic definition of Γ will in general involve the current density
operator of the relative motion and a total scattering cross section, see below.

The important point to note is that the information that a collision will
take place changes our knowledge about the state, as described by the gen-
eralized measurement transformation (5.16). At the same time, we have to
keep in mind that the measurement is not real, but is introduced here only
for enabling us to account for the state dependence of the collision probabil-
ity. It is therefore reasonable to take the detection process as efficient , see
Sect. 5.1.3, and minimally-invasive, i.e., Uα = I in (5.20), so that neither
unnecessary uncertainty nor a reversible back-action is introduced. This im-
plies that after a (hypothetical) detector click, but prior to scattering, the
system-probe state will have the form

M (�tot|CΔt) =
Γ1/2�totΓ

1/2

tr (Γ�tot)
. (5.150)
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This measurement transformation reflects our improved knowledge about the
incoming two-particle wave packet, and it may be viewed as enhancing those
parts which are heading toward a collision. Similarly, the absence of a detec-
tion event during Δt changes the state, and this occurs with the probability
Prob

(
CΔt

)
= 1− Prob (CΔt).

Using the state transformation (5.150) we can now formulate the uncon-
ditioned system-probe state after a coarse-grained time Δt as the mixture
of the colliding state transformed by the S-matrix and the untransformed
non-colliding one, weighted with their respective probabilities,

�′tot(Δt) = Prob (CΔt|�tot) SM (�tot|CΔt) S†+ Prob
(
CΔt|�tot

)
M

(
�tot|CΔt

)

= SΓ1/2�totΓ
1/2S†Δt+ �tot − Γ1/2�totΓ

1/2Δt . (5.151)

Here, the complementary map M
(
·|CΔt

)
is fixed by the requirement that the

state �tot should remain unchanged both if the collision probability vanishes,
Γ = 0, and if the scattering has no effect, S = I.

Focusing on the nontrivial part T of the two-particle S-matrix S = I+ iT
one finds that the unitarity of S implies that

Im(T) ≡ 1
2i
(
T− T†) =

1
2
T†T . (5.152)

Using this relation we can write the differential quotient as

�′tot (Δt)− �tot

Δt
= TΓ1/2�totΓ

1/2T† − 1
2
T†TΓ1/2�totΓ

1/2 (5.153)

−1
2
Γ1/2�totΓ

1/2T†T +
i
2

[
T + T†, Γ1/2�totΓ

1/2
]
.

It is now easy to arrive at a closed differential equation. We trace out the en-
vironment, assuming, in accordance with the Markov approximation, that
the factorization �tot = ρ ⊗ ρE is valid prior to each monitoring inter-
val Δt. Taking the limit of continuous monitoring Δt → 0, approximating
TrE

([
Re(T), Γ1/2�totΓ

1/2
])

' TrE

([
Γ1/2 Re(T)Γ1/2, �tot

])
, and adding the

generator H of the free system evolution we arrive at [34]

d
dt
ρ =

1
i�

[H, ρ] + iTrE

([
Γ1/2 Re(T)Γ1/2, ρ⊗ ρE

])

+ TrE

(
TΓ1/2 [ρ⊗ ρE ] Γ1/2T†

)

−1
2

TrE

(
Γ1/2T†TΓ1/2 [ρ⊗ ρE ]

)

−1
2

TrE

(
[ρ⊗ ρE ] Γ1/2T†TΓ1/2

)
. (5.154)

This general monitoring master equation, entirely specified by the rate oper-
ator Γ, the scattering operator S = I+iT, and the environmental state ρE , is
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non-perturbative in the sense that the collisional interaction is nowhere as-
sumed to be weak. It is manifestly Markovian even before the environmental
trace is carried out, and one finds, by doing the trace in the eigenbasis of
ρE , that is has the general Lindblad structure (5.79) of the generator of a
quantum dynamical semigroup. The second term in (5.154), which involves a
commutator, accounts for the renormalization of the system energies due to
the coupling to the environment, just like (5.148), while the last three lines
describe the incoherent effect of the coupling to the environment.

So far, the discussion was very general. To obtain concrete master equa-
tions one has to specify system and environment, along with the operators
Γ and S describing their interaction. In the following applications, we will
assume the environment to be an ideal Maxwell gas, whose single particle
state

ρgas =
Λ3

th

Ω
exp

(
−β p2

2m

)
(5.155)

is characterized by the inverse temperature β, the normalization volume Ω,
and the thermal de Broglie wave length Λth defined in (5.128).

5.4.3 Collisional Decoherence of a Brownian Particle

As a first application of the monitoring approach, let us consider the “local-
ization” of a mesoscopic particle by a gaseous environment. Specifically, we
will assume that the mass M of this Brownian particle is much greater than
the mass m of the gas particles. In the limit m/M → 0 the energy exchange
during an elastic collision vanishes, so that the mesoscopic particle will not
thermalize in our description, but we expect that the off-diagonal elements
of its position representation will get reduced, as discussed in Sect. 5.3.4.

This can be seen by considering the effect of the S-matrix in the limit
m/M → 0. In general, a collision keeps the center-of-mass invariant, and only
the relative coordinates are affected. Writing S0 for the S-matrix in the center
of mass frame and denoting the momentum eigenstates of the Brownian and
the gas particle by |P 〉 and |p〉, respectively, we have [35]

S|P 〉|p〉 =
∫

d3Q|P−Q〉|p+Q〉〈m∗
m

p−m∗
M

P +Q|S0|
m∗
m

p−m∗
M

P 〉 , (5.156)

where m∗ = Mm/ (M +m) is the reduced mass and Q is the transfered
momentum (and thus the change of the relative momentum). In the limit of
a large Brownian mass we have m∗/m→ 1 and m∗/M → 0, so that

S|P 〉|p〉 →
∫

d3Q|P −Q〉|p + Q〉〈p + Q|S0|p〉 [for M ( m] . (5.157)

It follows that a position eigenstate |X〉 of the Brownian particle remains
unaffected by a collision,
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S|X〉|ψin〉E = |X〉
(
e−ip·X/�S0eip·X/�

)
|ψin〉E

︸ ︷︷ ︸
|ψ(X)

out 〉E

, (5.158)

as can be seen by inserting identities in terms of the momentum eigenstates.
Here, |ψin〉E denotes an arbitrary single-particle wave packet state of a gas
atom. The exponentials in (5.158) effect a translation of S0 from the origin
to the position X, so that the scattered state of the gas particle |ψ(X)

out 〉E
depends on the location of the Brownian particle.

Just like in Sect. 5.1.1, a single collision will thus reduce the spatial co-
herences ρ (X,X ′) = 〈X|ρ|X ′〉 by the overlap of the gas states scattered at
positions X and X ′,

ρ′ (X,X ′) = ρ (X,X ′) 〈ψ(X′)
out |ψ(X)

out 〉E . (5.159)

The reduction factor will be the smaller in magnitude the better the scattered
state of the gas particle can “resolve” between the positions X and X ′.

In order to obtain the dynamic equation we need to specify the rate oper-
ator. Classically, the collision rate is determined by the product of the current
density j = ngasvrel and the total cross section σ (prel), and therefore Γ should
be expressed in terms of the corresponding operators. This is particularly sim-
ple in the large mass limit M →∞, where vrel = |p/m− P /M | → |p| /m, so
that the current density and the cross section depend only on the momentum
of the gas particle, leading to

Γ = ngas
|p|
m
σ (p) . (5.160)

If the gas particle moves in a normalized wave packet heading toward the
origin then the expectation value of this operator will indeed determine the
collision probability. However, this expression depends only on the modulus of
the velocity so that it will yield a finite collision probability even if the particle
is heading away form the origin. Hence, for (5.154) to make sense either the
S-matrix should be modified to keep such a non-colliding state unaffected or
Γ should contain in addition a projection to the subset of incoming states,
see the discussion below.

In momentum representation, ρ (P ,P ′) = 〈P |ρ|P ′〉, (5.154) assumes the
general structure16

∂tρ (P ,P ′) =
1
i�
P 2 − (P ′)2

2M
ρ (P ,P ′)

+
∫

dP 0dP ′
0 ρ (P 0,P

′
0)M (P ,P ′;P 0,P

′
0)

16 The second term in (5.154) describes forward scattering and vanishes for mo-
mentum diagonal ρE .
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−1
2

∫
dP 0ρ (P 0,P

′)
∫

dP f M (P f ,P f ;P 0,P )

−1
2

∫
dP ′

0ρ (P ,P ′
0)
∫

dP f M (P f ,P f ;P ′,P ′
0) . (5.161)

The dynamics is therefore characterized by a single complex function

M (P ,P ′;P 0,P
′
0) = 〈P | trgas

(
TΓ1/2 [|P 0〉〈P ′

0| ⊗ ρgas] Γ1/2T†
)
|P ′〉 ,

(5.162)

which has to be evaluated. Inserting the diagonal representation of the gas
state (5.155)

ρgas =
(2π�)3

Ω

∫
dp0μ (p0) |p0〉〈p0| (5.163)

it reads, with the choices (5.157) and (5.160) for S and Γ,

M(P ,P ′;P−Q,P ′−Q′) =
∫

dp1dp0μ (p0) δ (Q + p1 − p0) δ (Q′ + p0 − p1)

×ngas

m
|p0|σ (p0)

(2π�)3

Ω
|〈p1|T0|p0〉|2

= δ (Q−Q′)
∫

dp0 μ (p0)
ngas

m
|p0|σ (p0)

× (2π�)3

Ω
|〈p0 −Q|T0|p0〉|2

=: δ (Q−Q′)Min (Q) . (5.164)

This shows that, apart from the unitary motion, the dynamics is simply
characterized by momentum exchanges described in terms of gain and loss
terms,

∂tρ (P ,P ′) =
1
i�
P 2 − (P ′)2

2M
ρ (P ,P ′) +

∫
dQ ρ (P −Q,P ′ −Q)Min (Q)

−ρ (P ,P ′)
∫

dQMin (Q) . (5.165)

We still have to evaluate the function Min (Q), which can be clearly inter-
preted as the rate of collisions leading to a momentum gain Q of the Brownian
particle,

Min (Q) =
ngas

m

∫
dp0μ (p0) |p0|σ (p0)

(2π�)3

Ω
|〈p0 −Q|T0|p0〉|2 .

(5.166)
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It involves the momentum matrix element of the on-shell T0-matrix, S0 =
1 + iT0, which, according to elastic scattering theory [35], is proportional to
the scattering amplitude f ,

〈pf |T0|pi〉 =
f(pf ,pi)

2π�
δ

(
p2

f

2
− p2

i

2

)

. (5.167)

The delta function ensures the conservation of energy during the collision.
At first sight, this leads to an ill-defined expression since the matrix ele-
ment (5.167) appears as a squared modulus in (5.166), so that the three-
dimensional integration is over a squared delta function.

The appearance of this problem can be traced back to our disregard of
the projection to the subset of incoming states in the definition (5.160) of Γ.
When evaluating Min we used the diagonal representation (5.163) for ρgas in
terms of (improper) momentum eigenstates, which comprise both incoming
and outgoing characteristics if viewed as the limiting form of a wave packet.
One way of implementing the missing projection to incoming states would be
to use a different convex decomposition of ρgas, which admits a separation
into incoming and outgoing contributions [36]. This way, Min can indeed
be calculated properly, albeit in a somewhat lengthy calculation. A shorter
route to the same result sticks to the diagonal representation, but modifies
the definition of S in a formal sense so that it keeps all outgoing states
invariant.17 The conservation of the probability current, which must still be
guaranteed by any such modification, then implies a simple rule how to deal
with the squared matrix element [36],

(2π�)3

Ω
|〈pf |T0|pi〉|2 −→

|f(pf ,pi)|2

piσ(pi)
δ

(
p2

f

2
− p2

i

2

)

. (5.168)

Here σ(p) =
∫

dΩ′ |f(pn′, pn)|2 is the total elastic cross section. With this
replacement we obtain immediately

Min (Q) =
ngas

m

∫
dp0 μ (p0) |f(p0 −Q,p0)|2 δ

(
p2

0

2
− (p0 −Q)2

2

)

.

(5.169)

As one would expect, the rate of momentum changing collisions is determined
by a thermal average over the differential cross section dσ/dΩ = |f |2.

Also for finite mass ratios m/M a master equation can be obtained this
way, although the calculation is more complicated [37, 38]. The resulting
linear quantum Boltzmann equation then describes on equal footing the de-
coherence and dissipation effects of a gas on the quantum motion of a particle.
17 In general, even a purely outgoing state gets transformed by S, since the definition

of the S-matrix involves a backward time evolution [35].
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The “localizing” effect of a gas on the Brownian particle can now be seen,
after going into the interaction picture in order to remove the unitary part of
the evolution, and by stating the master equation in position representation.
From (5.165) and (5.169) one obtains

∂tρ̃(X,X ′) = −F (X −X ′)ρ̃(X,X ′) (5.170)

with localization rate [36]

F (x) =
∫ ∞

0

dv ν(v) ngas v

∫
dΩ1dΩ2

4π

(
1− eimv(n1−n2)·x/�

)

×|f(mvn2,mvn1)|2 . (5.171)

Here, the unit vectors n1,n2 are the directions of incoming and outgoing gas
particles associated to the elements of solid angle dΩ1 and dΩ2 and ν (v) is
the velocity distribution in the gas. Clearly, F (x) determines how fast the
spatial coherences corresponding to the distance x decay.

One angular integral in (5.171) can be performed in the case of isotropic
scattering, f(pf ,pi) = f

(
cos (pf ,pi) ;E = p2

i /2m
)
. In this case,

F (x) =
∫ ∞

0

dv ν(v) n gasv

{
σ(mv)− 2π

∫ 1

−1

d (cos θ)
∣∣∣f
(
cos θ;E =

m

2
v2
)∣∣∣

2

× sinc
(

2 sin
(
θ

2

)
mv |x|

�

)}
, (5.172)

with sinc(x) = sin(x)/x and θ the (polar) scattering angle.
The argument of the sinc function is equal to the momentum exchange

during the collision times the distance in units of �. As |X −X ′| −→ 0 the
sinc approaches unity and the angular integral yields the total cross section
σ so that the localization rate vanishes, as required. At very small distances,
a second order expansion in the distance x is permissible and one obtains a
quadratic dependence [39], such as predicted by the Caldeira–Leggett model,
see (5.127). However, once the distance |X −X ′| is sufficiently large so that
the scattered state can resolve whether the collision took place at position X
or X ′ the sinc function in (5.172) suppresses the integrand. It follows that
in the limit of large distances the localization rate saturates, at a value given
by the average collision rate F (∞) = 〈σvngas〉, see Fig. 5.2.

Decoherence in this saturated regime of large separations has been ob-
served, in good agreement with this theory, in molecular interference exper-
iments in the presence of various gases [40]. The intermediate regime be-
tween quadratic increase and saturation was also seen in such experiments
on momentum-exchange mediated decoherence, by studying the influence of
the heat radiation emitted by fullerene molecules on the visibility of their
interference pattern [41].

As a conclusion of this section, we see that the scattering approach permits
to incorporate realistic microscopic interactions transparently and without
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x

ngas vσ v

F x

Fig. 5.2. The localization rate (5.172) describing the loss of wave-like behavior
in a Brownian particle state saturates for large distances at the average collision
rate. In contrast, the Caldeira–Leggett model predicts a quadratic increase beyond
all bounds (dashed line), see (5.126). This indicates that linear coupling models
should be taken with care if time scales are involved that differ strongly from the
dissipation time scale

approximation in the interaction strength. The results show clearly that linear
coupling models, which imply that decoherence rates grow above all bounds,
have a limited range of validity. They cannot be judged by their success
in describing dissipative phenomena. Frequent claims of “universality” in
decoherence behavior, which are based on these linear coupling models, are
therefore to be treated with care.

5.4.4 Decoherence of a Quantum Dot

As a second application of the monitoring approach, let us see how the dy-
namics of an immobile object with discrete internal structure, such as an
implementation of a quantum dot, gets affected by an environment of ideal
gas particles. For simplicity, we take the gas again in the Maxwell state
(5.155), though different dispersion relations, e.g., in the case of phonon
quasi-particles, could be easily incorporated. The interaction between sys-
tem and gas will be described in terms of the in general inelastic scattering
amplitudes determined by the interaction potential.

In the language of scattering theory the energy eigenstates of the non-
motional degrees of freedom are called channels. In our case of a structureless
gas they form a discrete basis of the system Hilbert space. In the following,
the notation |α〉, not to be confused with the coherent states of Sect. 5.3.4,
will be used to indicate the system eigenstates of energy Eα. In this channel
basis, ραβ = 〈α|ρ|β〉, the equation of motion (5.154) takes on the form of a
general discrete master equation of Lindblad type,
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∂tραβ =
Eα + εα − Eβ − εβ

i�
ραβ +

∑

α0β0

ρα0β0 M
α0β0
αβ

−1
2

∑

α0

ρα0β

∑

γ

Mα0α
γγ − 1

2

∑

β0

ραβ0

∑

γ

Mββ0
γγ . (5.173)

The real energy shifts εα given below describe the coherent modification of
the system energies due to the presence of the environment. They are due to
the second term in (5.154) and are the analogue of the Lamb shift (5.148)
encountered in the weak coupling calculation. The incoherent effect of the
environment, on the other hand, is described by the set of complex rate
coefficients

Mα0β0
αβ = 〈α|TrE

(
TΓ1/2 [|α0〉〈β0| ⊗ ρgas] Γ1/2T†

)
|β〉 . (5.174)

In order to calculate these quantities we need again to specify the rate op-
erator Γ. In the present case, it is naturally given in terms of the current
density operator j = ngasp/m of the impinging gas particles multiplied by
the channel-specific total scattering cross sections σ (p, α),

Γ =
∑

α

|α〉〈α| ⊗ ngas
|p|
m
σ (p, α) . (5.175)

Like in Sect. 5.4.3, this operator should in principle contain a projection to
the subset of incoming states of the gas particle. Again, this can be accounted
for in two different ways in the calculation of the rates (5.174). By using a
non-diagonal decomposition of ρgas, which permits to disregard the outgoing
states, one obtains18

Mα0β0
αβ = χα0β0

αβ

ngas

m2

∫
dp dp0μ (p0) fαα0 (p,p0)

×f∗
ββ0

(p,p0) δ
(

p2 − p2
0

2m
+ Eα − Eα0

)
, (5.176)

with the Kronecker-like factor

χα0β0
αβ :=

{
1 if Eα − Eα0 = Eβ − Eβ0

0 otherwise . (5.177)

The energy shifts are determined the real parts of the forward scattering
amplitude,

εα = −2π�
2ngas

m

∫
dp0μ (p0) Re [fαα (p0,p0)] . (5.178)

18 For the special case of factorizing interactions, Hint = A ⊗ BE , and for times
large compared to all system time scales this result can be obtained rigorously
in a standard approach [42], by means of the “low-density limit” scaling method
[2, 23].
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Some details of this calculation can be found in [34]. Rather than repeating
them here we note that the result (5.176) can be obtained directly by using the
diagonal representation (5.163) of ρgas and the multichannel generalization
of the replacement rule (5.168),

(2π�)3

Ω
〈αp|T|α0p0〉〈β0p0|T†|βp〉 →

χα0β0
αβ

p0m

fαα0 (p,p0) f∗
ββ0

(p,p0)
√
σ (p0, α0)σ (p0, β0)

×δ
(

p2 − p2
0

2m
+Eα − Eα0

)
.(5.179)

The expression for the complex rates simplifies further if the scattering ampli-
tudes are rotationally invariant, fαα0

(
cos (p,p0) ;E = p2

0/2m
)
. In this case

we have

Mα0β0
αβ = χα0β0

αβ

∫ ∞

0

dvν (v)ngasvout (v) 2π
∫ 1

−1

d (cos θ)

×fαα0

(
cos θ;E =

m

2
v2
)
f∗

ββ0

(
cos θ;E =

m

2
v2
)

(5.180)

with ν (v)the velocity distribution like in (5.172), and

vout (v) =

√

v2 − 2
m

(Eα − Eα0) (5.181)

the velocity of a gas particle after a possibly inelastic collision.
This shows that limiting cases of (5.173) display the expected dynamics.

For the populations ραα it reduces to a rate equation, where the cross sections
σαα0 (E) = 2π

∫
d (cos θ) |fαα0 (cos θ;E)|2 for scattering from channel α0 to

α determine the transition rates,

Mα0α0
αα =

∫
dvν (v)ngasvout (v)σαα0

(m
2
v2
)
. (5.182)

In the case of purely elastic scattering, on the other hand, i.e., for Mα0β0
αβ =

Mαβ
αβ δαα0δββ0 , the coherences are found to decay exponentially,

∂t |ραβ | = −γelastic
αβ |ραβ | . (5.183)

The corresponding pure dephasing rates are determined by the difference of
the scattering amplitudes,

γelastic
αβ = π

∫
dvν (v)ngasvout (v)

∫ 1

−1

d (cos θ)

×
∣∣∣fαα

(
cos θ;

m

2
v2
)
− fββ

(
cos θ;

m

2
v2
)∣∣∣

2

. (5.184)
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As one expects in this case, the better the scattering environment can dis-
tinguish between system states |α〉 and |β〉 the more coherence is lost in this
elastic process.

In the general case, the decay of off-diagonal elements will be due to a com-
bination of elastic and inelastic processes. Although little can be said without
specifying the interaction, it is clear that the integral over |fαα − fββ |2 in
(5.184), a “decoherence cross section” without classical interpretation, is not
related to the inelastic cross sections characterizing the population transfer,
and may be much larger. In this case, the resulting decoherence will be again
much faster than the corresponding relaxation time scales.

5.5 Robust States and the Pointer Basis

We have seen that, even though the decoherence predictions of linear coupling
models has to be taken with great care, the general observation remains
valid that the loss of coherence may occur on a time scale γ−1

deco that is
much shorter the relaxation time γ−1. Let us therefore return to the general
description of open systems in terms of a semigroup generator L, and ask
what we can say about a general state after a time t which is still small
compared to the relaxation time, but much larger than the decoherence time
scale. From a classical point of view, which knows only about relaxation, the
state has barely changed, but in the quantum description it may now be well
approximated by a mixture determined by particular projectors P�,

eLt : ρ
γ−1
deco�t�γ−1

−−−−−−−−−→ ρt ' ρ′ =
∑

�

tr(ρP�)P�. (5.185)

This set of projectors {P�}, which depend at most weakly on t, is called
pointer basis [43] or set of robust states [44]. It is distinguished by the fact
that a system prepared in such a state is hardly affected by the environment,
while a superposition of two distinct pointer states decoheres so rapidly that
it is never observed in practice.

We encountered this behavior with the damped harmonic oscillator dis-
cussed in Sect. 5.3.4. There the coherent oscillator states remained pure un-
der Markovian dynamics, while superpositions between (macroscopically dis-
tinct) coherent states decayed rapidly. Hence, in this case the coherent states
Pα = |α〉〈α| can be said to form an (over-complete) set of robust states,
leading to the mixture

ρ′ =
∫

dμ (α) tr(ρPα)Pα , (5.186)

with appropriate measure μ.
The name pointer basis is well-fitting because the existence of such robust

states is a prerequisite for the description of an ideal measurement device in
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a quantum framework. A macroscopic – and therefore decohering – appara-
tus implementing the measurement of an observable A is ideally constructed
in such a way that macroscopically distinct positions of the “pointer” are
obtained for the different eigenstates of A. Provided these pointer positions
of the device are robust, the correct values are observed with certainty if
the quantum system is in an eigenstate of the observable. Conversely, if the
quantum system is not in an eigenstate of A, the apparatus will not end up
in a superposition of pointer positions, but be found at a definite position,
albeit probabilistically, with a probability given by the Born rule.

The main question regarding pointer states is, given the environmental
coupling or the generator L, what determines whether a state is robust or
not, and how can we determine the set of pointer states without solving the
master equation for all initial states. It is fair to say that this issue is not
fully understood, except for very simple model environments, nor is it even
clear how to quantify robustness.

An obvious ansatz, due to Zurek [6, 45], is to sort all pure states in the
Hilbert space according to their (linear) entropy production rate, or rate of
loss of purity,

∂tSlin[ρ] = −2 tr (ρL(ρ)) . (5.187)

It has been called “predictability sieve” since the least entropy producing and
therefore most predictable states are candidate pointer states [6].

In the following, a related approach will be described, following the pre-
sentation in [3, 46]. It is based on a time-evolution equation for robust states.
Since such an equation must distinguish particular states from their linear
superpositions it is necessarily nonlinear.

5.5.1 Nonlinear Equation for Robust States

We seek a nonlinear time-evolution equation for robust pure states Pt which,
on the one hand, preserves their purity, and on the other, keeps them as close
as possible to the evolved state following the master equation.

A simple nonlinear equation keeping a pure state pure is given by the
following extension of the Heisenberg form for the infinitesimal time step,

Pt+δt = Pt + δt

(
1
i
[At,Pt] + [Pt, [Pt,Bt]]

)
, (5.188)

where A and B are hermitian operators. In fact, the unitary part can be
absorbed into the nonlinear part by introducing the hermitian operator
Xt = −i[At,Pt] + Bt. It “generates” the infinitesimal time translation of the
projectors (and may be a function of Pt),

Pt+δt = Pt + δt[Pt, [Pt,Xt]] . (5.189)

With this choice one confirms easily that the evolved operator has indeed the
properties of a projector, to leading order in δt,
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P†
t+δt = Pt+δt (5.190)

and

(Pt+δt)
2 = Pt+δt +O(δt2) . (5.191)

The corresponding differential equation reads

∂tPt =
Pt+δt − Pt

δt
= [Pt, [Pt,Xt]] . (5.192)

To determine the operator Xt one minimizes the distance between the time
derivatives of the truly evolved state and the projector. If we visualize the
pure states as lying on the boundary of the convex set of mixed states, then
a pure state will in general dive into the interior under the time evolution
generated by L. The minimization chooses the operator Xt in such a way that
Pt sticks to the boundary, while remaining as close as possible to the truly
evolved state.

The (Hilbert–Schmidt) distance between the time derivatives can be cal-
culated as

‖L(Pt)︸ ︷︷ ︸
≡Z

−∂tPt‖2HS = tr
[
(Z− [Pt, [Pt,Xt]])

2
]

= tr
(
Z2 − 2(Z2Pt − (ZPt)

2)
)

+2 tr
(
(Z− X)2Pt − ((Z− X)Pt)

2
)
. (5.193)

We note that the first term is independent of X, whereas the second one is
non-negative. With the obvious solution Xt = Z ≡ L(Pt) one gets a nonlinear
evolution equation for robust states Pt, which is trace and purity preserving
[46],

∂tPt = [Pt, [Pt,L(Pt)]] . (5.194)

It is useful to write down the equation in terms of the vectors |ξ〉 which
correspond to the pure state Pt = |ξ〉〈ξ|,

∂t|ξ〉 = [L(|ξ〉〈ξ|)− 〈ξ|L(|ξ〉〈ξ|)|ξ〉
︸ ︷︷ ︸

“decay rate”

]|ξ〉 . (5.195)

If we take L to be of the Lindblad form (5.79) the equation reads

∂t|ξ〉 =
1
i�

H|ξ〉+
∑

k

γk

[
〈L†

k〉ξ
(
Lk − 〈Lk〉ξ

)
− 1

2

(
L†

kL− 〈L†
kLk〉

)]
|ξ〉

− 1
i�
〈H〉ξ|ξ〉 . (5.196)

Its last term is usually disregarded because it gives rise only to an additional
phase if 〈H〉ξ is constant. The meaning of the nonlinear equation (5.196) is
best studied in terms of concrete examples.
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5.5.2 Applications

Damped Harmonic Oscillator

Let us start with the damped harmonic oscillator discussed in Sect. 5.3.4. By
setting H = �ωa†a and L = a (5.196) turns into

∂t|ξ〉 = −iωa†a|ξ〉+ γ

(
〈a†〉ξ(a− 〈a〉ξ)−

1
2
(
a†a− 〈a†a〉ξ

)
)
|ξ〉 . (5.197)

Note that the first term of the non-unitary part vanishes if |ξ〉 is a coherent
state, i.e., an eigenstate of a. This suggests the ansatz |ξ〉 = |α〉 which leads
to

∂t|α〉 =
[(
−iω − γ

2

)
αa† +

γ

2
|α|2

]
|α〉 . (5.198)

It is easy to convince oneself that this equation is solved by

|αt〉 = |α0e−iωt−γt/2〉 = e−|αt|2/2eαta
† |0〉 (5.199)

with αt = α0 exp (−iωt− γt/2). It shows that the predicted robust states are
indeed given by the slowly decaying coherent states encountered in Sect. 5.3.4.

Quantum Brownian Motion

A second example is given by the Brownian motion of a quantum particle.
The choice

H =
p2

2m
and L =

√
8π
Λth

x (5.200)

yields a master equation of the form (5.117) but without the dissipation term.
Inserting these operators into (5.196) leads to

∂t|ξ〉 =
p2

2mi�
|ξ〉 − γ

4π
Λ2

th

[(x− 〈x〉ξ)2 − 〈(x− 〈x〉ξ)2〉ξ︸ ︷︷ ︸
σ2

ξ(x)

]|ξ〉 . (5.201)

The action of the non-unitary term is apparent in the position representation,
ξ(x) = 〈x|ξ〉. At positions x which are distant from mean position 〈x〉ξ as

compared to the dispersion σξ(x) =
〈
(x− 〈x〉ξ)2

〉1/2

ξ
the term is negative

and the value ξ(x) gets suppressed. Conversely, the part of the wave function
close to the mean position gets enhanced,

〈x|ξ〉 =
{

suppressed if |x− 〈x〉ξ | > σξ(x)
enhanced if |x− 〈x〉ξ | < σξ(x) .

(5.202)
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This localizing effect is countered by the first term in (5.201) which causes
the dispersive broadening of the wave function. Since both effects compete
we expect stationary, soliton-like solutions of the equation.

Indeed, a Gaussian ansatz for |ξ〉 with ballistic motion, i.e., 〈p〉ξ = p0,
〈x〉ξ = x0 + p0t/m, and a fixed width σξ(x) = σ0 solves (5.201) provided [44]

σ2
0 =

1
4π

√
kBT

2�γ
Λ2

th =
(

�
3

8γm2kBT

)1/2

, (5.203)

see (5.128). As an example, let us consider a dust particle with a mass of 10 μg
in the interstellar medium interacting only with the microwave background of
T = 2.7K. Even if we take a very small relaxation rate of γ = 1/(13.7×109 y),
corresponding to the inverse age of the universe, the width of the solitonic
wave packet describing the center of mass is as small as 2 pm. This sub-
atomic value demonstrates again the remarkable efficiency of the decoherence
mechanism to induce classical behavior in the quantum state of macroscopic
objects.
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6 Diffusive Spin Transport

C.A. Müller

Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

6.1 Introduction

Classical information processing uses charge encoding where the bit values
“0” and “1” are represented by a supplementary charge present or absent in
a register. In the quantum limit, one eventually is led to consider a single
elementary charge (electron or hole) in a quantum dot and hopes to realise
quantum superpositions of “qubit” states |0〉 and |1〉 and entanglement be-
tween distinct qubits. But since they interact via long-range Coulomb forces,
charge states suffer strongly from decoherence. Another discrete degree of
freedom is spin. Spin 1

2 states, typically noted |±1〉 or |↑, ↓〉, are the natu-
ral realisation of a qubit. But spin, and more generally information as such,
needs a physical carrier. Candidates here are electrons or holes (massive par-
ticle of spin s = 1

2 ) and photons (massless, spin s = 1). A new promising field
therefore is “spint(r)onics”: spin-based information transport and processing
with electrons and photons.

For these lectures, I chose to discuss the following model setting of diffu-
sive spin transport (Fig. 6.1): spin-polarised particles are injected from the
left with probability p↑(0) = 1 into a disordered sample and move diffusively
towards the right, where a spin-sensitive detection reads out the final spin
polarisation p↑(L) that we should calculate.

The leitmotiv of this lecture was as follows: Spin is a geometrical quantity,
and one should be able to use irreducible representations of the rotation group

0 L

p↑(0) = 1 p↑(L) =?

Fig. 6.1. Model setting of diffusive spin transport: spin-polarised particles are
injected from the left with p↑(0) = 1 into a disordered sample and move diffusively
towards the right, where a spin-sensitive detection reads out the spin-polarisation
p↑(L)

Müller, C.A.: Diffusive Spin Transport. Lect. Notes Phys. 768, 277–314 (2009)

DOI 10.1007/978-3-540-88169-8 6 c© Springer-Verlag Berlin Heidelberg 2009
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in order to take advantage of symmetries. Since the participants of the school
were not required to have been educated in group theory, I decided to give a
rather complete introduction into representations of the rotation group with
the hope that the sometimes intimidating jargon of group-theoretical argu-
ments may become more familiar to everybody. Attending myself other lec-
tures, I adopted a master-equation approach parallelling Klaus Hornberger’s
lecture to which the present notes refer occasionally. During the lecture it-
self, only the first part on spin relaxation was delivered as presented in the
following; in the second part on diffusion, I relied on arguments taken from di-
agrammatic perturbation theory that seemed to bewilder the audience more
than anything else. The present notes remedy to this dissymmetry and treat
also the diffusive part as momentum relaxation with a master equation. This
parallel allows to combine both dynamics rather economically into a single,
coherent picture of diffusive spin dynamics; it is my hope that this conceptual
unity is appreciated by my readers.

These notes finish with a description of quantum corrections to diffusive
spin transport including spin-flip effects. Other subjects covered during the
school’s lecture were of a more anecdotic type and, although hopefully enjoyed
by the audience, did not seem to fit into the present format; readers interested
in spintronics properly speaking are referred to the recent review by Žutić,
Fabian, and Das Sarma [1]. I have to admit that I made no attempt to cover
systematically the vast literature on the subject of irreversible spin dynamics
and quantum transport, which would have been a hopeless task in any case;
my apologies to many colleagues whose excellent contributions may not be
duly cited in the following.

6.2 Spin Relaxation

“Spin” is internal angular momentum [2, 3]. This was recognised by Uhlenbeck
and Goudsmit [4] following Pauli [5] who postulated the existence of a fourth
quantum number to explain fine-structure features of atomic spectra. The
clearest experimental manifestation of quantised spin is arguably the Stern–
Gerlach experiment [6], where silver atoms are deviated by an inhomogeneous
magnetic field into two distinct spots on a detector screen.

Dirac discovered that bispinors (vectors of four components, a spin 1
2

spinor and an anti-spinor) appear naturally when one looks for a Schrödinger-
type wave equation in the relativistic framework of the four-dimensional
Minkowski space. Wigner [7] showed that spin is one of the fundamen-
tal quantum numbers that permits to identify an elementary particle in
the first place: it characterises the particle’s properties under rotations
in its proper rest frame. Therefore, to understand spin is to understand
rotations.
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6.2.1 Spin – A Primer on Rotations

Rotation Group

Physical objects are described by coordinates x = (x1, x2, x3) ∈ R3 with
respect to a reference frame in configuration space. Rotations (called “active”
when the object is turned and “passive” when the reference frame is turned)
are represented by 3 × 3 matrices: x′ = Rx. Proper rotations conserve the
Euclidean scalar product x · y =

∑
i xiyi and the orientation of the frame.

The rotation matrices are therefore members of SO(3), the set of orthogonal
matrices RRt = RtR = 13 of unit determinant detR = +1. With the usual
matrix multiplication as an internal composition law, theses matrices form a
group, satisfying the group axioms:

1. Internal composition: ∀R1,2 ∈ SO(3) : R21 = R2R1 ∈ SO(3);
2. Existence of the identity: ∃E : RE = ER = R ∀R ∈ SO(3) with E = 13;
3. Existence of the inverse: ∀R, ∃R−1 : RR−1 = R−1R = E.

The group is non-Abelian because the matrices do not commute: R2R1 �=
R1R2. An exception are rotations of the plane around one and the same axis,
forming the Abelian group SO(2).

A possible parametrisation of a rotation is the polar description (n̂, θ) =:
θ with n̂ the unit vector along the rotation axis and θ ∈ [0, π] the rotation
angle. The following two rotations of configuration space are identical:

R(n̂, θ = π) = R(−n̂, θ = π) . (6.1)

These opposite points must be identified such that there are closed parameter
curves that cannot be contracted into a single point, see Fig. 6.2. This means
that SO(3) is a doubly connected manifold. Instead of studying this projective
group, one may also turn to its universal covering group SU(2), the group
of all unitary 2× 2 matrices over C with unit determinant. SU(2) is simply

Fig. 6.2. The parameter space of the rotation group SO(3), a filled sphere of radius
π. Two identical rotations (see (6.1)) can be connected by a closed curve that is
not reducible to a single point
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connected, and there is a homomorphism (a mapping preserving the group
structure) linking every element U ∈ SU(2) to the rotation R ∈ SO(3): the
rotation x′ = R(θ)x is described by

x′ · σ = U(θ)x · σU(θ)† . (6.2)

Here, σ = (σ1, σ2, σ3) is a vector whose entries σi are the Pauli matrices such
that

x · σ =
(

x3 x1 − ix2

x1 + ix2 −x3

)
(6.3)

and the unitary rotation matrix acting from the left and from the right is
given by

U(θ) = 12 cos
θ

2
− in̂ · σ sin

θ

2
= exp(−i

θ · σ
2

) . (6.4)

Note that this mapping is two-to-one because U and −U yield the same
rotation, and that it takes a rotation by an angle of 4π to recover the identity
transformation: U(θ = 2π) = −12, but U(θ = 4π) = +12. This is not a
mysterious quantum property as is sometimes stated, but reflects the double-
connectedness of SO(3)-rotations in our everyday reference frame.1 Dirac’s
construction of a solid body connected by strings to a reference frame is
supposed to convey an “experimental” idea of this property [3].

Representations

A group G can act in many different disguises that share the same abstract
group structure, as defined by the multiplication law or group table. These dif-
ferent appearances are called (linear) representations. Mathematically, they
are mappings Di : G → GL(Vi) from the group G to the general (linear)
group of regular transformations D : Vi → Vi of a vector space Vi into itself.2

Importantly, this mapping must be a homomorphism which means that the
representation has the same group structure as G. Notably, for all elements
g1, g2 ∈ G (with the product g2g1 ∈ G), the representing transformations
verify D(g2g1) = D(g2)D(g1).

The dimension of the representation Di is given by dimVi. Finite-dimen-
sional linear representations are given in terms of quadratic matrices of size
dimVi. A representation is called reducible if there is a basis of V = V1 ⊕ V2

such that all transformations D ∈ D are written

D =
(
D1 ∗
0 D2

)
. (6.5)

1 Cartan developed half-integer spin representations as early as 1913 within the
theory of projective groups [8].

2 D stands for the German word “Darstellung”; in anglo-saxon literature, often
the symbol Γ is used.
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In other words, the transformations D1 : V1 → V1 define already a representa-
tion D1 of its own. If the matrix is block-diagonal (∗ = 0), the representation
is completely reducible. If it is not reducible, it is called irreducible, meaning
that one has achieved to work in the smallest possible subspace.

The rotation group SU(2) is a manifold that depends on a continuous set
of parameters θ = (θ1, θ2, θ3) with respect to which it is infinitely differen-
tiable. This structure is called a Lie group. The group multiplication law is
completely determined by the commutation relation of its generators:

[Jj , Jk] := JjJk − JkJj = i�εjklJl . (6.6)

Here, as in the following, the sum over repeated indices is understood. These
generators are said to form a (representation of) the Lie algebra su(2). In
the so-called natural representation of SU(2) by itself (see (6.4)), the genera-
tors are J = �

σ
2 . Other representations will feature different generators, but

all group representations share the same commutation relation! Finite rota-
tions are generated by exponentiation: U(θ) = exp(−iθ ·J/�). Topologically
speaking, SU(2) is compact. According to a general theorem, all representa-
tions of a compact Lie group are completely reducible to finite-dimensional
irreducible representations.

Functional Representation of SO(3)

As an example for an infinite-dimensional representation of the rotation group
SO(3) already useful in classical physics, consider the transformation of func-
tions f describing the position of an object on the unit sphere. Saying that
the object is rotated to r′ = Rr implies that the function is transformed by

(Df)(r) = f(R−1r) . (6.7)

The action of D in the (infinite-dimensional) functional space can be written
D = exp{−iθ · T }, where T = −ir × ∇ is a differential operator, as can
be verified by considering an infinitesimal rotation around θ = θn̂: to first
order in θ, we have f(R−1r) = f(r − θ × r) = f(r) − (θ × r) · ∇f(r) =
[1− θ · (r ×∇)]f(r).

The finite-dimensional irreducible representations to which this infinite-
dimensional one can be reduced are obtained by decomposing f into surface
harmonics YLm; each subspace L = 0, 1, . . . then admits an irreducible repre-
sentation of dimension 2L+1. Surface harmonics are a concept arising already
with the multipole expansion of charge distributions in classical electrody-
namics. But to cite Hermann Weyl [9]: “This reveals the true significance
of surface harmonics; they are characterised by the fundamental symmetry
properties here developed, and the solution of the potential equation in polar
co-ordinates is merely an accidental approach to their theory.”
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What Is Quantum About Spin?

Spin, and especially half-integer spin, is much less mysterious than sometimes
suggested by standard textbook wisdom. Half-integer spin does not require
the kinematic framework of special relativity, it arises already in Galilean
relativity. Also, as mentioned at the end of Sect. 6.2.1, reference frames for
solid bodies already introduce half-integer spin. However, there are genuine
quantum features to be aware of:

1. In classical mechanics, Noether’s theorem assures that if the Lagrangian
function is invariant under infinitesimal rotations, then the orbital an-
gular momentum L is a conserved quantity. However, L a priori has
nothing to do with the generator of rotations T introduced in the previ-
ous section. In quantum mechanics, thanks to the appearance of �, the
generators can be identified with observables J = �T with dimension of
angular momentum. If the Hamiltonian is invariant under all rotations
U(θ), their generators itself are conserved quantities, and Noether’s the-
orem takes a very simple form:

H ′ = UHU† ⇔ [H,U ] = 0 ⇔ [H,J ] = 0 ⇔ J̇ = 0 . (6.8)

Separating the orbital part L of angular momentum from the total an-
gular momentum J = L ⊗ 1S + 1L ⊗ S =: L + S, one identifies the
rest-frame angular momentum or spin S obeying the same fundamen-
tal commutation relations (6.6). In the remainder, we will only have to
consider the spin part and let L = 0.

2. The observables S generate irreducible representations D(s) of dimension
ds = 2s + 1 with s = 0, 1

2 , . . . and discrete magnetic quantum numbers
m = −s,−s+1, . . . , s. Pure states are noted |sm〉. The Casimir operator
S2 specifies the irreducible representation, S2|sm〉 = �

2s(s + 1)|sm〉,
whereas the magnetic quantum number gives the projection of the spin
onto the quantisation axis (usually called the z-axis): Sz|sm〉 = �m|sm〉.

3. States can be classified regarding their transformation properties, but
here with a more general importance than in classical mechanics due to
the superposition principle. An atomic s-orbital, for instance, may be seen
as a “coherent superposition of all possible Kepler orbits” and is invari-
ant under all rotations. In Sect. 6.2.3, we will introduce the irreducible
components of mixed quantum states, also known as state multipoles.

6.2.2 Master Equation Approach to Spin Relaxation

As a simple model for spin dynamics, we shall study the Hamiltonian

H = −μS ·B . (6.9)

It describes the coupling of the magnetic moment μ = μS to a magnetic
field B. For electrons, μ = −gμB in terms of the Bohr magneton μB =
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|e|�/(2mec) and the gyromagnetic ratio g = 2.003 . . . in vacuum. The spin
operator has been chosen dimensionless such that its action in the irreducible
representation D(s) will be Sz|sm〉 = m|sm〉 and S2|sm〉 = s(s + 1)|sm〉 for
the remainder of the lecture. The density matrix or statistical operator ρ
of a spin S is a positive linear operator of trace unity on the state Hilbert
space Hs = Cds of dimension ds := dimHs = 2s + 1 that determines the
expectation values of abitrary observables O as 〈O〉 = tr{ρO}.

Unitary Spin Dynamics

According to one of the fundamental axioms of quantum theory, any closed
quantum system evolves unitarily according to the Liouville–von Neumann
equation

i�∂tρ = [H, ρ] . (6.10)
This equation of motion is formally solved as ρ(t2) = U(t2, t1)ρ(t1)U(t2, t1)†

by applying the time evolution operator for a time-dependent Hamiltonian,

U(t2, t1) = T exp
{
− i

�

∫ t2

t1

H(t′)dt′
}
, (6.11)

where T[H(t1)H(t2) . . . H(tn)] = H(ti)H(tj) . . . H(tk) for ti > tj > · · · > tk
is Dyson’s time-ordering operation.

Non-unitary Spin Dynamics: A Classical Model Derivation

Phenomena like “relaxation, damping, dephasing, decoherence,. . .” have in
common irreversible dynamics with an “arrow of time” [10] due to the irrevo-
cable loss of energy and/or information into inobservable degrees of freedom,
which are usually called “bath” or “environment”.

As an introductory model, we consider the Hamiltonian H = −μS ·B(t)
with a randomly fluctuating magnetic field B(t). Predictions about the spin
will involve an average over the field fluctuations, which we describe as a
classical stochastic process [11]. This approach is typical for the physics of
nuclear magnetic resonance; a regular driving magnetic field can of course be
included in the treatment, but here we concentrate on the effect of random
fluctuations.

To obtain the effective dynamics, we develop the time-propagated den-
sity matrix ρ(t + Δt) = U(t + Δt, t)ρ(t)U(t + Δt, t)† to second order in the
interaction Hamiltonian,

ρ(t+Δt) = ρ(t)− i
�

t+Δt∫

t

[H(t1), ρ(t)]dt1 +
1
�2

∫t+Δt∫

t

H(t1)ρ(t)H(t2)dt1dt2

− 1
2�2

∫t+Δt∫

t

T(H(t1)H(t2)ρ(t) + ρ(t)H(t1)H(t2))dt1dt2 ,

(6.12)
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and perform an average over all possible realisations of the fluctuating mag-
netic field B(t). As a stochastic process [11], it is completely specified by its
correlation functions

Ci1i2...in
(t1, t2, . . . , tn) := Bi1(t1)Bi2(t2) . . . Bin

(tn) , (6.13)

the overline indicating an ensemble average over the field distribution. This
distribution is taken to be centred Gaussian hence all correlation functions
factorise into products of pair correlations. Therefore, only the first two mo-
ments need to be specified: Bi(t) = 0 (zero mean) and

Bi(t1)Bj(t2) =: B2cij(t1, t2) . (6.14)

We assume a stationary process that depends only on the time difference
t1 − t2 and has a very short internal correlation time τc such that cij(t) =
cijτcδ(t). This last assumption of “white noise” (the power spectrum c̃ij(ω) =
cst. contains all frequencies with equal weight) is valid if the noise correlation
time τc is much shorter than the relevant timescale of the spin dynamics that
is still to be determined. Lastly, we assume that the fluctuations are isotropic,
cij = 1

3δij .
Now we average the time-propagated density matrix (6.12) over the field

fluctuations and use the Born assumption that there are no further correla-
tions between the fields appearing explicitly and the average density matrix.
Then, the ensemble average applies to the fields only. The term linear in H
disappears because Bi = 0. In the second-order terms, one of the time inte-
grations is contracted by the δ(t1−t2)-distribution of the correlation function;
the remaining integrand is time independent such that the integral gives just
a factor Δt. The average time-evolved density matrix then becomes

ρ(t+Δt) = (1− γsΔt)ρ(t) + γsΔt
∑

i

Ŝiρ(t)Ŝi +O((γsΔt)2) , (6.15)

where Ŝi := Si/
√
s(s+ 1) is the “normalised spin operator” with

∑
i Ŝ

2
i = 1.

The spin relaxation rate γs := s(s + 1)ω2
0τc is given in terms of the squared

effective Larmor frequency ω2
0 = μ2B2/(3�

2). The relevant timescale of evo-
lution turns out to be τs := 1/γs. The effective time evolution (6.15) is then
valid for a small time step Δt% τs such that indeed γsΔt% 1.

Exercise 1 (Non-unitary spin dynamics: quantum derivation)
Consider the time-independent model Hamiltonian H = −�JS · τ , where

our spin S is coupled to a freely orientable magnetic impurity, here mod-
elled as a spin 1

2 with Pauli matrices τ . The effective spin dynamics of S
is described by its reduced density matrix ρ(t) = trτ{ρSτ (t)} obtained by
tracing out the uncontrolled impurity spin. Develop the time-evolved com-
plete density matrix ρSτ (t) to second order in J as in Sect. 6.2.2 and take
the trace over the impurity with initial statistical mixture ρτ (0) = 1

212 (it is
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helpful to use the identities trτ{τi} = 0 and trτ{τiτj} = 2δij). Show that one
finds exactly the evolution (6.15) with a relaxation rate γs = s(s + 1)J2Δt
up to higher-order terms that become negligible in the formal limit Δt → 0
together with J →∞ taken at constant γs.3

The Quantum Channel and Its Operator Sum Representation

In the language of quantum information, the time evolution (6.15) up to order
Δt defines a quantum channel ρ = ρ(t) → ρ′ = ρ(t + Δt) and is here given
in the so-called operator sum representation (see [12] Sect. 8.2.3.)

ρ′ =
3∑

i=0

WiρW
†
i (6.16)

with

W0 :=
√

1− γsΔt1, Wi :=
√
γsΔt Ŝi, i = 1, 2, 3 . (6.17)

It is easy to verify that
∑3

i=0W
†
i Wi = 1, which guarantees the trace con-

servation trρ′ = trρ. Kraus has proved that a channel of this form assures
that the final density matrix is again completely positive. Therefore, it is
also known as the Kraus representation, and the Wi are commonly referred
to as Kraus operators, cf. Sect. 5.3.1. In contrast to the unitary evolution
ρ′ = UρU† of (6.10), the appearance of several independent terms in the sum
(6.16) signals non-unitary dynamics.

For a spin 1
2 with Ŝi = σi/

√
3, this quantum channel is the qubit depolar-

ising channel (see [12] Sect. 8.3.4.):

ρ′ = (1− p1)ρ+
p1

3

∑

i

σiρσi, p1 = γsΔt . (6.18)

With equal probability p1/3, the qubit is affected by the action of one of the
Pauli matrices σi, and with probability 1 − p1, it remains untouched. Since
for spin 1

2 one may write
∑

i σiρσi = 212 − ρ, the channel also takes the
suggestive form

ρ′ = (1− p2)ρ+
p2

2
12 . (6.19)

This means that with probability p2 = 4p1/3 (remember p1 % 1 such that
also p2 % 1), the density matrix is taken to a complete statistical mixture
and remains identical with probability (1− p2).
3 But attention: at finite coupling J , the dynamics of our spin shows recurrence

on a timescale given by the so-called Poincaré time trec ∝ 1/J . One could obtain
a truly irreversible dynamics only by supposing that the single impurity spin is
reset rapidly enough in order to dispose the coherence. Alternatively, one may
imagine the setting treated in Sect. 6.4.1: our spin is moving and encounters
different impurity spins such that in the thermodynamic limit, the Poincaré
recurrence time goes to infinity and true irreversibility sets in.
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By convention, the “depolarising channel” for higher spin S ≥ 1 (i.e.,
ds× ds density matrices with ds = 2s+1 ≥ 3) is still defined via the relation
(6.19) with the statistical mixture 1

ds
1ds

on the right-hand side. This channel
is also called “SU(n) channel” with n = ds because the corresponding Kraus
operators are the n2−1 generators of the Lie algebra su(n) [13]. Note that our
physical model of an arbitrary spin S coupled to a fluctuating magnetic field
does not lead to this specific Lie algebra channel: obviously, the operator-
sum representation (6.16) contains only the three generators of su(2), albeit
in a representation of dimension ds = 2s + 1. We will see in the following
that this makes the spin dynamics richer and its description more involved.
Group-theoretical methods will be introduced that are well adapted to cope
with this complexity.

The Liouvillian

The linear operators on the state Hilbert space Hs are themselves elements
of a linear vector space (we can add operators and multiply them by complex
numbers). This vector space is called Liouville space L(Hs) and is spanned,
for example, by the basis of dyadics induced by basis vectors |n〉 of Hs:

|m〉〈n| =: |mn), n,m = 1, . . . , ds . (6.20)

The Liouville–von Neumann equation of motion i∂tρ = Lρ for a closed quan-
tum system defines the Liouvillian

L =
1
�
[H, ·] , (6.21)

whose matrix elements in the dyadic basis are

(mn|L|m′n′) = Lmn,m′n′ = Hmm′δnn′ −Hn′nδmm′ . (6.22)

Exercise 2 (Liouvillian eigenvalues)
Show that the eigenvalues of the Liouvillian in the basis {|mn)} induced

by the energy basis H|m〉 = εm|m〉 are the possible transition frequencies
ωmn = (εm − εn)/�. These are experimentally accessible quantities, in con-
trast to the absolute energy eigenvalues of the Hamiltonian H.

As an operator between operators, the Liouvillian L : L(Hs) → L(Hs) is
called a superoperator [14–17]. The superoperator formalism is a convenient
starting point for projection operator techniques in statistical dynamics [15],
effective dynamics of open quantum systems [18] and time-dependent pertur-
bation theory [19].

The Lindbladian

The effective dynamics of our spin coupled to a randomly fluctuating field
can also be formulated in terms of a superoperator. Taking the formal limit
limΔt→0

ρ(t+Δt)−ρ(t)
Δt =: ∂tρ(t) in (6.15) leads to the master equation
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∂tρ(t) = Lρ(t), (6.23)

a linear equation of motion for the effective density operator, whose effective
generator of time evolution is the Lindbladian [17]

Lρ(t) = −γs

2

∑

i

[Ŝi, [Ŝi, ρ(t)]] =
γs

2

∑

i

(
2Ŝiρ(t)Ŝi − ŜiŜiρ(t)− ρ(t)ŜiŜi

)
.

(6.24)
This is a pure relaxation superoperator in the Lindblad form, which assures
the complete positivity of the time-evolved density matrix (see Sect. 5.3.2).
The symbolic limit Δt→ 0 really means Δtγs % 1 but is still assumed to be
“coarse-grained” compared to the field correlations, Δt ( τc. In this limit,
the master equation (6.23) is a linear equation for the density matrix ρ(t)
local in time t and thus describes Markovian dynamics without any memory
effects.

Exercise 3 (Lindbladian matrix elements)
Show that the superoperator matrix elements of the Lindbladian (6.24)

are given by
Lmn,m′n′ = γs

(
Ŝmm′ · Ŝn′n − δmm′δnn′

)
, (6.25)

and verify the trace-preserving property
∑

m Lmm,m′n′ = 0 from this expres-
sion.

6.2.3 Irreducible Scalar Spin Relaxation Rates

Formally, the solution of the master equation (6.23) is very simple:

ρ(t) = exp[Lt]ρ(0) . (6.26)

The dynamics induced by the Lindbladian is called a “quantum dynamic
semigroup”, cf. Sect. 5.3.1. Indeed, the time evolution superoperator satis-
fies exp[L(t2 + t1)] = exp[Lt2] exp[Lt1] and exp[L0] = 1, which indicates a
group structure. “Semigroup” means that the inverse to each element does
not need to exist, and indeed here it does not since the non-unitary dynam-
ics obtained by tracing out the environment has induced an arrow of time.
The Kraus representation (6.16) and the Lindblad form (6.24) guarantee the
complete positivity of the final density matrix if the initial one is completely
positive, but the inverse is not true: the Lindbladian is not invertible (see
[17] Sect. 3.4.1). We will indeed see in Sect. 6.2.3 that L has one vanishing
eigenvalue.

In Liouville space, the master equation is a matrix equation ∂t|ρ) = L|ρ)
of dimension d2

s×d2
s. As always when dealing with matrix equations, we have

to diagonalise the Lindbladian in Liouville space in order to be able to use
the formal solution (6.26). For spin 1

2 and ds = 2, diagonalising a 4×4 matix
is elementary and can be done by hand, but already for spin 1 with d2

s = 9,
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this becomes cumbersome. For higher spin, one definitely needs to resort to
an efficient strategy to find the eigenstructure of the Lindbladian. In the
following, we show how to take maximal advantage of rotational symmetries
by using group-theoretical methods that lead to a very simple and physically
transparent description for the effective spin dynamics.

Scalar Relaxation Process: What Results We Should Expect

The Lindbladian was obtained by an isotropic average and is thus a scalar
object, i.e., invariant under rotations. A rather high-brow way of expressing
this simple property is to say “it transforms under the trivial representation
D(0)”. We may anticipate that the statistical operator can be decomposed
into parts that transform under the irreducible representations D(K) of the
rotation group, ρ =

∑
K ρ(K). The Lindbladian as a scalar object can only

connect subspaces of equal rank K. Furthermore, inside each subspace, it
cannot distinguish between different orientations. Thus, in an adapted basis
of Liouville space, it can be written as a purely diagonal matrix

L =

⎛

⎜⎜⎜
⎝

λ0 0 . . . 0
0 λ1 . . . 0
...

...
. . .

...
0 0 . . . λd2

s

⎞

⎟⎟⎟
⎠
. (6.27)

How many different eigenvalues may we expect? The total number is the
dimension of the Liouville space, d2

s. Each subspace of rank K will have
dimension dK = 2K + 1. Therefore, we will have to find only 2s+ 1 different
eigenvalues λK , each of which has degeneracy 2K + 1:

particle s ds d
2
s eigenvalues degeneracy

electron 1
2 2 4 λ0, λ1 1, 3

photon 1 3 9 λ0, λ1, λ2 1, 3, 5

Can some of the eigenvalues be identical which would imply an even larger
degeneracy? A trivial example for this would be any operator proportional to
the identity. But we will see below that this is not the case for the Lindbladian
(6.24): the eigenvalues pertaining to different subspaces K �= K ′ are indeed
different, λK �= λK′ . We are therefore sure to have reduced the problem to
the simplest possible formulation.

Irreducible Tensor Operators

Before we can define irreducible superoperators, we first had better under-
stand the simpler concept of ordinary irreducible operators. An irreducible
tensor operator of rank K is, by definition, a set of 2K + 1 components TK

Q ,
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Q = −K,−K+1, . . . ,K, that transform under irreducible representations of
rank K (i.e., whose transformation does not mix different K):

(TK
Q )′ = UTK

Q U† =
K∑

Q=−K

D
(K)
QQ′T

K
Q′ . (6.28)

Equivalently, one specifies the infinitesimal rotation properties by requiring

[J±, TK
Q ] = �

√
K(K + 1)−Q(Q± 1)T (K)

Q±1 , (6.29)

[J0, T
K
Q ] = �QTK

Q . (6.30)

Here, the angular momentum raising and lowering operators are J± = Jx ±
iJy. The simplest examples for irreducible tensor operators we need to know
for the following are

- K = 0 or scalar operator T 0
0 , a single operator that commutes with

all components of the total angular momentum J . For instance S2, the
Casimir operator indexing the irreducible representations D(s).

- K = 1 or vector operator with Euclidean components A = (A1, A1, A3)
satisfying

[Jj , Ak] = i�εjklAl , (6.31)

and spherical components A0 = A3 and A±1 = ∓ 1√
2
(A1 ± iA2).

Exercise 4 (Irreducible or Not?)
Is the Hamiltonian H = p2

2m − μS ·B of a free massive particle coupled
to an external magnetic field B via the magnetic moment μ = μS of its spin
S a scalar? An irreducible tensor operator?

State Multipoles

In the usual Hilbert space basis, the statistical operator reads

ρ =
∑

m,m′

ρmm′ |sm〉〈sm′| . (6.32)

Here, the ket |sm〉 transforms under the irreducible representation D(s),
whereas the bra 〈sm′|, as its complex conjugate, transforms under (D(s))∗, the
contragredient representation. The ket-bra |sm〉〈sm′| transforms under the
direct product D(s)⊗(D(s))∗, which is reducible. One introduces therefore an
ensemble of elements that do transform under the irreducible representation
D(K),

TK
Q := TK

Q (s, s) :=
∑

m,m′

(−)s−m〈ssm′−m|KQ〉|sm′〉〈sm| (6.33)
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with K = 0, 1, . . . , 2s and Q = −K,−K + 1, . . . ,K. The Clebsch–Gordan
coefficients 〈s1s2m1m2|KQ〉 are the coefficients of the unitary basis change
from the direct productHs1⊗Hs1 towards the Hilbert subspaceHK of spin K
that should be familiar from the addition of two spins. The CG coefficients
are non-zero only if two selection rules are satisfied: (i) the two magnetic
quantum numbers on the left add up to the one on the right, m1 + m2 =
Q; (ii) the angular momentum on the right satisfies the triangle inequality
|s1 − s2| ≤ K ≤ s1 + s2.

In our case, we do not couple two spins, but a spin and its complex
conjugate. Since there is a contragredient representation in the game, the
CG coefficients in (6.33) feature a characteristic minus sign in front of −m.
The triangle selection rule implies for us 0 ≤ K ≤ 2s.

The irreducible tensor operators TK
Q =: |KQ) form a basis of Liouville

space that is properly orthonormal with respect to the trace scalar product
of matrices:

(KQ|K ′Q′) := tr{(TK
Q )†TK′

Q′ } = δKK′δQQ′ . (6.34)

The Hermitian conjugate is (TK
Q )† = (−)QTK

−Q. Any linear operator A can
be decomposed in this basis,

A =
∑

KQ

AKQT
K
Q with AKQ := (KQ|A) = tr{(TK

Q )†A} . (6.35)

The irreducible components

ρKQ = tr{(TK
Q )†ρ} =

〈
(TK

Q )†
〉

(6.36)

of the density matrix are called state multipoles or statistical tensors, and
have been introduced already in the 1950s by Fano and Racah [20–22].

Exercise 5 (Irreducible Tensor Operators)
(0) Show that all TK

Q except T 0
0 have zero trace and calculate the state

monopole moment ρ00 (use
√

2s+ 1〈ssm′−m|00〉 = (−)s−mδmm′).
(1) Show that the irreducible vector operator is proportional to the spin op-
erator, T 1

Q = c
−1/2
s SQ. Hint: consider the action of T 1

0 (
√
cs〈ssm−m|10〉 =

(−)s−mm), argue with rotational invariance and fix the proportionality con-
stant cs = s(s+ 1)ds/3 by computing tr[(T 1)2].

Irreducible Spin Superoperators

By inserting the decomposition (6.35) on the left and right side of an arbitrary
superoperator acting like LA, one obtains

LA =
∑

KQK′Q′

|K ′Q′) (K ′Q′|L|KQ) (KQ|A) , (6.37)
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such that with the notation LK′Q′,KQ := (K ′Q′|L|KQ) the superoperator
reads

L =
∑

KQK′Q′

LK′Q′,KQ|K ′Q′)(KQ| , (6.38)

where the Liouville-space dyadics on the right-hand side transform under
D(K′)⊗ (D(K))∗, in an analogous manner to (6.32). Following the same strat-
egy as previously, we recouple the elements again using the appropriate CG-
coefficients to get irreducible superoperators [23]

T L
M (K,K ′) :=

∑

Q,Q′

(−)K−Q〈K ′KQ′−Q|LM〉 |K ′Q′)(KQ| . (6.39)

Finally, any superoperator in completely decomposed form reads

L =
∑

LM

∑

K,K′

LLM (K,K ′)T L
M (K,K ′) (6.40)

with coefficients LLM (K,K ′) =
∑

Q,Q′(−)K−Q〈K ′KQ′−Q|LM〉LK′Q′,KQ.
This decomposition is completely general and applies to arbitrary superoper-
ators. It is only worth the effort, however, if the superoperator has rotational
symmetries. The greatest gain in computational speed and conceptual clar-
ity is obtained if the superoperator is a scalar such that its only non-zero
component is L = 0,M = 0. In that case, which applies to our Lindbladian
(6.24), one finds by virtue of the triangle rule that K = K ′: as promised, L
indeed connects subspaces of equal rank. We can choose the decomposition

L =
2s∑

K=0

λKT (K) , (6.41)

where the T (K) are orthogonal projectors onto the subspaces L(Hs)(K) of
irreducible tensor operators of rank K:

T (K) =
√

2K + 1 T 0
0 (K,K) =

∑

Q

|KQ)(KQ| . (6.42)

They are indeed orthogonal, T (K)T (K′) = δKK′T (K), by virtue of (6.34),
and resolve the identity in Liouville space,

∑
K T (K) = 1, by virtue of a

completeness relation of CG coefficients.

Scalar Relaxation Rates

Once the invariant subspaces are known, the eigenvalues are obtained by
projecting the superoperator onto an arbitrary basis element:

λK = (KQ|L|KQ) = tr
{
(TK

Q )†LTK
Q

}
. (6.43)
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For the spin relaxation Lindbladian (6.24), one must calculate commutators
of the form [Si, [Si, T

K
Q ]]. In order to use the defining commutation rela-

tions (6.29) and (6.30) for irreducible tensor operators, one writes the scalar
product of spin operators in terms of the spherical components S0 = Sz,
S±1 = ∓ 1√

2
(Sx ± iSy),

∑

i

SiSi =
∑

p=0,±1

(Sp)†Sp =
∑

p=0,±1

(−)pSpS−p , (6.44)

such that

λK = − γs

2s(s+ 1)

∑

p=0,±1

(−)ptr
{
(TK

Q )†[S−p, [Sp, T
K
Q ]]

}
. (6.45)

It is now a simple exercise to show with the help of (6.29) and (6.30) (by
paying attention to the supplementary factor

√
2� in the definition of the rais-

ing/lowering components J± =
√

2�S±1) that the double commutator gives
back the tensor operator itself, [S−p, [Sp, T

K
Q ]] = c(p,Q,K)TK

Q . Summing all
three terms gives remarkably simple eigenvalues,

λK = −γs
K(K + 1)
2s(s+ 1)

, K = 0, 1, . . . , 2s . (6.46)

These real, negative eigenvalues describe a pure relaxation process as ex-
pected from the definition of the Lindbladian (6.24). They are scalar objects,
also known as rotational invariants, and can be expressed in terms of 6j-
coefficients that are constructed out of the irreducible representations D(K)

for the state multipole, D(s) for the spin S itself and D(1) for its coupling
to the vector field B [3, 23]. This type of consideration is of considerable
importance in many different fields of physics involving angular momentum
or spin; for example, relaxation coefficients very similar to (6.46) characterise
spatial correlations in certain ground states of quantum spin chains [24].

Isotropic Spin Relaxation

The master equation ∂tρ(t) = Lρ(t) separates into uncoupled equations for
each invariant subspace:

∂tρ(t) =
∑

KQ

∂tρKQ(t)TK
Q =

∑

KQ

ρKQ(t)LTK
Q =

∑

KQ

ρKQ(t)λKT
K
Q . (6.47)

The resulting differential equation ∂tρKQ(t) = λKρKQ(t) for the state mul-
tipoles is easily solved to yield a simple exponential decay

ρKQ(t) = e−γKtρKQ(0) (6.48)

with relaxation rates γK = |λK |. This is a particular example for a state
multipole relaxation as described by Blum in Chap. 8 of [20]. The first two
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values deserve a special discussion. The scalar mode relaxation rate γ0 =
0 assures the trace preservation of ρ(t). At the same time, this vanishing
eigenvalue is responsible for the fact that the Lindbladian is not invertible.
The vector mode relaxation rate γ1 = γs/[s(s + 1)] =: 1/τ1 describes the
relaxation of the orientation or average spin vector:

〈S(t)〉 = tr{ρ(t)S} = e−t/τ1 〈S(0)〉 (6.49)

since tr{TK
Q SQ′} projects onto K = 1 (remember exercise 5(1) and the or-

thogonality relation (6.34)).
For a qubit spin 1

2 , this is all that needs to be calculated since any 2× 2-
density matrix can be parameterised as ρ2(t) = 1

212 + 〈S(t)〉 · σ and thus

ρ2(t) = e−t/τ1ρ(0) + (1− e−t/τ1)
1
2
12 . (6.50)

This isotropic spin 1
2 relaxation therefore is for all times given by the de-

polarising channel (6.19) with p2(t) = 1 − e−t/τ1 . The Kraus operators for
the operator sum representation (6.16), valid for all times, follow by using
p1(t) = 3

4p2(t):

W0(t) =

√
1 + 3e−t/τ1

2
12, Wi(t) =

√
1− e−t/τ1

2
σi, i = 1, 2, 3 . (6.51)

Naturally, by developing these expressions to first order in t/τ1 = 4
3γst, one

finds the Kraus operators for an infinitesimal time step derived in Sect. 6.2.2.
In general, it is easy to show by derivation that to each quantum dynamical
semigroup described by an exponential superoperator exp[Lt] corresponds a
Lindblad-type master equation [25], cf. Sect. 5.3.2. However, as always, the
inverse operation of integrating the infinitesimal time evolution to finite times
is much harder. Deriving a set of Kraus operators for an arbitrary quantum
channel in general requires the complete diagonalisation of the microscopic
Hamiltonian. Luckily, for spin 1

2 everything is so simple that the complete
calculation is possible.

Naturally, one thus wonders whether the full-fledged angular momentum
formalism is necessary at all to describe isotropic spin relaxation. A simple
calculation shows that in the “depolarising channel” defined by (6.19), all
non-scalar eigenvalues λ1, λ2, . . . are identical, such that again the Kraus
operators are the generators of the su(n) Lie algebra. For that channel, one
does not need to employ angular momentum theory, and the Kraus operators
are the generators of the su(n) Lie algebra [13]. But please be aware that this
is not the case for our arbitrary spin coupled to a freely fluctuating impurity
spin where all higher state multipoles K ≥ 1 come with their own different
decay rates (6.46). For this channel, the author has not been able to determine
the Kraus operators for finite times (but would certainly be happy to receive
any valuable information on that point by his readers). In this case, there
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seems to be no easier way to describe the spin relaxation than in terms of
the irreducible components:

ρ(t) =
∑

KQ

e−γKtρKQ(0)TK
Q . (6.52)

This implies the simple exponential decay

AKQ(t) = e−γKtAKQ(0) (6.53)

for the irreducible components (6.35) of any observable A.

6.3 Diffusion

6.3.1 Transport

We may call “transport” a movement from a point r to a point r′ that is
induced by an external cause. In free space, propagation is ballistic: the av-
erage square of the distance covered after a time t scales like

〈
r2
〉
∼ v2t2,

where v is the particle’s velocity. A disordered medium contains impurities
that interrupt the ballistic movement. So-called “quenched” disorder is fixed
for each realisation of an experiment, but varies from experiment to experi-
ment when samples are changed. Predictions about observables will involve
an average (. . . ) by integrating over a classical disorder distribution or by
tracing out uncontrolled quantum degrees of freedom. Generically, the aver-
aged expectation value behaves as a diffusive quantity: 〈r2〉 ∼ 2Dt with D
the diffusion constant .

In a hydrodynamic description, diffusion is a direct consequence of two
very basic hypotheses:

(i) a local conservation law ∂tn + ∇ · j = 0, also known as the continuity
equation, linking the local density n(r, t) and the local current density
j(r, t), and

(ii) a linear response relation j = −D∇n, known as Fourier’s law in the con-
text of heat transport and Fick’s law in the context of particle diffusion.

By inserting the second relation into the first, one finds immediately the dif-
fusion equation (∂t−D∇2)n = 0. The hydrodynamic description is only valid
for times and distances large compared to the scales on which microscopic
scattering takes place. The linear response coefficient D has to be determined
microscopically. In essence, the simplest physical process leading to diffusion
is a random walk or repeated elastic scattering. A kinetic description where
point particles collide with obstacles permits to derive the diffusion constant
D associated with this process as function of microscopic scattering parame-
ters. In this section, we will derive the appropriate kinetic equation for elastic
momentum scattering from first principles using a master equation approach
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and determine the relevant diffusion constant. A largely equivalent presenta-
tion with more details can be found in Chap. 4 of the recommendable book
“Quantum Transport Theory” by J. Rammer [26].

6.3.2 Momentum – a Primer on Translations

If spin is to be understood by considering rotations, then momentum is un-
derstood by considering translations.

Let a particle be prepared at a point r0 = 0 with a spreading described
by a function f(r). After translation of the entire preparation apparatus by
a vector a ∈ Rd, the new position is described by the function

[Taf ](r) := f(r − a) (6.54)

such that the particle is indeed centred around r′
0 = a. In this so-called

“active” formulation of translations, relation (6.54) defines the action of the
translation operator Ta in a functional space of, say, probability distributions,
in exact analogy to the case of rotations treated in Sect. 6.2.1. Here, it is an
infinite-dimensional representation of the group (R,+) of real numbers with
the addition “+” as a group law; to be precise, in d dimensions it is the d-fold
direct product of such representations. Translations have the identity element
E = T0 and inverse T−1

a = T−a. This group is Abelian because different
translations commute: TaTb = Ta+b = Tb+a = TbTa. Furthermore, this
group is a simply connected Lie group, and all translations can be generated
by exponentiation Ta = exp{−ia · T } of i = 1, . . . , d generators Ti that form
a Lie algebra.4

In the functional representation (6.54), all translations Ta = exp{−ia ·
T } are generated by T = −i∇, the derivative with respect to the position
coordinate, which becomes apparent through a Taylor series expansion

f(r − a) = f(r)− a ·∇f(r) + · · · = exp{−a ·∇}f(r) . (6.55)

In quantum physics, the fundamental commutation relation between posi-
tion and momentum, [r̂i, p̂j ] = i�δij , implies that the momentum observable
p̂ = �T is the translation generator p̂ = −i�∇ in position representation.
Translations are implemented by the unitary operator
4 If, however, the possible positions lie on a lattice, only discrete translations by

lattice vectors are allowed, and translations are a representation of (Z, +), the
additive group of integer numbers. In an infinite volume, the translation group
is not compact because it is not bounded such that its representation theory is
quite different from the compact rotation groups SU(n). Notably, it has no finite-
dimensional irreducible representations. An exception is the discrete translations
on a lattice with periodic boundary conditions, often used for classification of
crystalline lattices. This group is the cyclic group, and its irreducible represen-
tations are labelled by the admissible wave vectors of the reciprocal lattice [27].
Physicists are taught to know this under the epithet of Bloch’s theorem.
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U(a) = exp{−ia · p̂/�} , (6.56)

such that the particle’s position operator r̂ transforms as

r̂′ = U(a)r̂U(a)† = r̂ − a , (6.57)

quite similarly to the corresponding identity (6.2) for rotations. In contrast
to the angular momentum commutation relations (6.6), the simpler version
[p̂i, p̂j ] = 0 for the translation generators reflects their Abelian structure.

The momentum operator is diagonal in the basis of momentum eigen-
states, p̂|p〉 = p|p〉. Any operator O is translation invariant if and only if it
commutes with the momentum operator, [O, p̂] = 0. Therefore, it is diagonal
in the momentum representation, 〈p′|O|p〉 = δpp′Op. Notably, in absence of
any external perturbation, the Hamiltonian H0 should be translation invari-
ant, H0|p〉 = εp|p〉, a property sometimes referred to by the expression “the
pis are good quantum numbers”. Henceforth, we will choose units such that
� = 1 and thus drop the distinction between momentum and wave vectors:
p = �k = k.

The spatial form of the wave functions ψp(r) = 〈r|p〉 is fixed by their
translational properties: using (6.54) together with (6.56) yields 〈r − a|p〉 =
〈r|[U(a)|p〉] = exp{−ia · p}〈r|p〉 such that 〈r|p〉 = C exp{ir · p} up to a
normalisation factor. In a finite volume Ω = Ld, these plane waves are square
integrable and can be properly normalised. We choose to work in the limit
Ω →∞ and fix C = 1. The identity is resolved by

1 =
∫

ddr|r〉〈r| =
∫

ddp

(2π)d
|p〉〈p| . (6.58)

Using the plane-wave expansion, Fourier transformation is written using the
convention

f(x) =
∫

ddp

(2π)d
eix·pfp with fp =

∫
ddx e−ix·pf(x) . (6.59)

This choice is convenient because factors of 2π are always associated with
p-integrals which, if required, can be easily converted back to finite-volume
sums,

∫
ddp

(2π)dF (p) = L−d
∑

p F (p).

6.3.3 Master Equation Approach to Diffusion

Hamiltonian

We will show that a microscopic quantum derivation of diffusive behaviour
is possible starting from the single-particle Hamiltonian

H = H0 + V . (6.60)
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Here the translation-invariant part H0 describes free propagation in momen-
tum eigenstates |p〉 with eigenenergies εp = p2/2m; the generalisation to
more general dispersion relations is straightforward. The random impurity
potential

V =
∑

i

v(r̂ − xi) =
∑

i

e−ip̂·xiv(r̂)eip̂·xi (6.61)

describes momentum scattering by an arbitrary potential v(r), typically quite
short-ranged, centred on random classical positions {xi}. Deriving observable
quantities will involve averages over all possible realisations of the disorder.
The ensemble average of any quantity O({xi}) is the integral

O =
∫

(
∏

i

ddxi)P ({xi})O({xi}) (6.62)

over all inpurity positions weighted by their distribution P ({xi}). The sim-
plest distribution P ({xi}) =

∏
i P (xi) =

∏N
i=1Ω

−1 describes N uncorrelated
impurities with average uniform density n = N/Ω in any finite volume Ω.
This distribution will be used in the following, and we will go to the thermo-
dynamic limit N,Ω →∞ with fixed density n.

This description is valid if the mass M of scattering impurities is much
larger than the mass m of scattered particles. This is the case for electrons
scattered by lattice defects in solid-state devices or for photons scattered by
cold atoms when recoil can be neglected. The impurities then have no inter-
nal dynamics and simply realise an external potential v(r); this description
can be obtained in the limit m/M → 0 from the more general model, where
also the dynamics of impurities is taken into account. Note that this limit
is just the opposite of the usual picture used for quantum Brownian mo-
tion, cf. Sect. 5.4.3, where one tracks the movement of a large test particle
bombarded frequently by smaller ones.

Derivation of the Master Equation

Here, we follow the standard derivation of a master equation for open quan-
tum systems [18, 28] by adapting the Born–Markov or weak-coupling recipe
to our case, cf. Sect. 5.4.1. The ensemble average (6.62) now plays the role of
a trace over bath variables.

Starting from the Liouville–von Neumann equation ∂tρ̃(t) = −i[Ṽ (t), ρ̃(t)]
in the interaction representation Ã(t) = U†

0 (t)AU0(t) and developing to sec-
ond order in the interaction leads to the pre-master equation for the averaged
density matrix ρ̃({xi}, t) =: ρ̃(t):

∂tρ̃(t) = −i[Ṽ (t), ρ(0)]−
∫ t

0

[
Ṽ (t), [Ṽ (t− t′), ρ̃({xi}, t− t′)]

]
dt′. (6.63)

We may assume that the initial density matrix ρ(0) does not depend on the
disorder configuration – it may, for instance, represent an initial wave-packet
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prepared far from impurities whose temporal evolution we wish to follow.
Then, the first term [Ṽ (t), ρ(0)] vanishes because

Ṽ (t) = Ṽ (t) = V (6.64)

is a constant real number that shifts all energy levels εp of H0 by a uniform
amount and thus gives no contribution under the commutator.

The resulting equation is still exact, but not useful: it is not a closed
equation for the ensemble-averaged ˜̄ρ(t) since the density matrix inside the
integral still depends on the disorder configuration. In order to cope with
the integrand, one typically proceeds with the so-called Born approximation,
replacing the exact density matrix inside the integral by its average:

∂t ˜̄ρ(t) = −
∫ t

0

[
Ṽ (t), [Ṽ (t− t′), ˜̄ρ(t− t′)]

]
dt′ . (6.65)

Now, we are left with an effective Gaussian model of disorder since everything
depends on the pair correlations V V . Concerning the time dependence, we
still face a difficult integro-differential equation for ˜̄ρ(t). If the timescale of
scattering is much smaller than the timescale of evolution we are interested
in, we can perform the Markov approximation by replacing ˜̄ρ(t − t′) → ˜̄ρ(t)
inside the integral and by letting the upper limit t of integration go to ∞
such that now we have a closed differential equation for ˜̄ρ(t). Reverting to the
Schrödinger representation we find the following master equation for scatter-
ing by fixed impurities:

∂tρ̄(t) = −i[H0, ρ̄(t)] +Dρ̄(t) (6.66)

with a scattering superoperator D defined by

Dρ̄(t) = V ρ̄(t)W +Wρ̄(t)V − VWρ̄(t)− ρ̄(t)WV , (6.67)

where

W :=
∫ ∞

0

Ṽ (−t′)dt′ =
∫ 0

−∞
U†

0 (t′)V U0(t′)dt′ =:
∑

j

e−ip̂·xjw(r̂)eip̂·xj .

(6.68)
It will become apparent in Sect. 6.3.3 that the weak coupling or Born ap-

proximation discards genuine quantum corrections and entails purely classical
dynamics. Instead of “approximation”, we had better speak of “simplifica-
tion” because at this stage we have no means of knowing whether the resulting
description is truly an approximation or perhaps qualitatively wrong. And re-
ally, in Sect. 6.4.2 we will see that quantum corrections need to be considered
in phase-coherent samples.
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Momentum Representation

In order to see what kind of evolution the master equation (6.66) describes,
we evaluate it in the momentum representation in which the free Hamiltonian
H0 is diagonal. In the short-hand notation |1〉 = |p1〉 and ε1 = εp1 , the first
scattering contribution reads

〈1|V ρ̄(t)W |4〉=
∑

2,3

∑

i,j

〈1|e−ip̂·xiv(r̂)eip̂·xi |2〉〈3|e−ip̂·xjw(r̂)eip̂·xj |4〉〈2|ρ̄(t)|3〉 .

(6.69)
The terms with i �= j are proportional to V

2
and cancel with an equivalent

contribution in (6.67) that comes with a minus sign (as before, the average
V gives no contribution thanks to the commutator structure of the equation
of motion). In the terms i = j, we can take the translation operators outside
the matrix elements and perform the ensemble average:

∑

i

e−i(p1−p2+p3−p4)·xi =
N

Ld

∫
ddx e−i(p1−p2+p3−p4)·x

= n(2π)dδ(p1 + p3 − p2 − p4) .

(6.70)

As expected, the average over a uniform distribution restores translational in-
variance which is equivalent to the conservation of total momentum expressed
by (2π)dδ(p1 + p3 − p2 − p4) =: δ1+3,2+4.

Proceeding in the evaluation of (6.69), the first matrix element

〈1|v(r̂)|2〉 =
∫

ddr e−i(p1−p2)·xv(r) = vp1−p2 =: v12 (6.71)

is the Fourier transform of the scattering potential. In the second matrix
element 〈3|w(r̂)|4〉 =

∫ 0

−∞〈3|U
†
0 (t′)v(r̂)U0(t′)|4〉dt′, we can pull out the time

integration ∫ 0

−∞
ei(ε3−ε4)t

′
dt′ =

i
ε4 − ε3 + i0

=: Γ34 . (6.72)

Readers with a background in perturbation theory will recognise this as the
matrix element Γ34 = i〈p3|GR

0 (ε4)|p3〉 of the free retarded resolvent operator
GR

0 (ω) = (ω − H0 + i0)−1. This gives us a hint on the applicability of the
Markov approximation: the rapid timescale here is the inverse energy differ-
ence ε3 − ε4 of incident and scattered state. The effective evolution on much
longer timescales into a new state |p3〉 is constrained by (6.72) to the energy
shell ε4 of the incident state |p4〉. The imaginary contribution of Γ produces
the Lamb shift that renormalises the original energy levels, cf. Sect. 5.4.1,
whereas the real part yields the relaxation rates that render the dynamics
irreversible.

Altogether, this first contribution to the collision functional reads

〈1|V ρ̄(t)W |4〉 = n
∑

2,3

δ1+3,2+4v12v34Γ34〈2|ρ̄(t)|3〉 . (6.73)
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Collecting all four contributions gives

〈1|Dρ̄(t)|4〉 = n
∑

2,3

[
δ1+3,2+4v12v34(Γ12 + Γ34)〈2|ρ̄(t)|3〉

−δ2,3(|v12|2Γ21 + |v34|2Γ43)〈1|ρ̄(t)|4〉
]
.

(6.74)

We choose to use the parametrisation

p1 = p + q/2 , p2 = p′ + q/2 ,
p4 = p− q/2 , p3 = p′ − q/2 ,

(6.75)

that complies with the conservation of total momentum (6.70). With this
parametrisation, v12 = vp−p′ = v∗34. Furthermore, energy differences become

ε1 − ε2 =: εp − εp′ +
(p− p′) · q

2m
(6.76)

and ε1− ε4 = p ·q/m, and we write the sum of matrix elements (6.72) in the
form

Γ12 + Γ34 =: Γpp′(q) . (6.77)

Finally, disposing of the overbar ρ̄(t) → ρ(t), the density matrix elements
ρ(p, q, t) := 〈p + q

2 |ρ(t)|p−
q
2 〉 obey the master equation

∂tρ(p, q, t) = −i
q · p
m

ρ(p, q, t) +D[ρ(p, q, t)] (6.78)

with the scattering functional

D[ρ(p, q, t)] = n

∫
ddp′

(2π)d
|vp−p′ |2 [Γpp′(q)ρ(p′, q, t)− Γp′p(q)ρ(p, q, t)] .

(6.79)

Trace Conservation and Continuity Equation

Clearly, the master equation (6.78) has the form of a kinetic balance equation
where the scattering functional (6.79) contains transitions p′ → p that in-
crease the magnitude of ρ(p, q, t) and also negative contributions of depleting
transitions p → p′. Since we have neither sinks nor external sources, the net
effect must be zero which should be apparent in a conservation of the local
probability density. And really, the master equation first of all preserves the
trace, ∂ttr{ρ(t)} =

∫
ddp

(2π)d ∂tρ(p, 0, t) = 0, since the scattering functional is
antisymmetric under the exchange p ↔ p′ and thus

∫
ddp

(2π)d
D[ρ(p, q, t)] = 0 . (6.80)
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This antisymmetry is inherited from the double-commutator structure of
(6.65) and holds for all spatial Fourier momenta q. Summing the q-dependent
master equation over p thus leads to the continuity equation

∂tnq(t) + iq · jq(t) = 0 (6.81)

that links the Fourier transforms of the local density n(r, t) and local current
density j(r, t), given as the first two p-moments of the density distribution:

nq(t) =
∫

ddr e−iq·rn(r, t) =
∫

ddp

(2π)d
ρ(p, q, t) , (6.82a)

jq(t) =
∫

ddr e−iq·rj(r, t) =
∫

ddp

(2π)d

p

m
ρ(p, q, t) . (6.82b)

The current vanishes by parity for isotropic distributions ρ(p, q, t).

Momentum Isotropisation

What kind of dynamics does the master equation describe? A first, sim-
ple answer is possible by considering the limit q = 0 that describes spa-
tially averaged quantities. The definitions (6.72), (6.76) and (6.77) imply
Γpp′(0) = 2πδ(εp−εp′), which assures the conservation of energy during elas-
tic scattering. Since the isotropic energy εp fixes the modulus of p′ = pn̂′, the
angular probability distribution ρ(pn̂, 0, t) =: fε(n̂, t) at fixed energy satisfies

∂tfε(n̂, t) = 2πn
∫

ddp′

(2π)d
δ(ε− εp′)|vp−p′ |2 [fε(n̂′, t)− fε(n̂, t)] . (6.83)

For an isotropic point-scatterer potential v(r) = v0δ(r) that has no depen-
dence on momentum, the equation of motion takes the simple form

∂tfε(n̂, t) = −γel(ε) [fε(n̂, t)− 〈fε(t)〉] , (6.84)

where 〈fε(t)〉 :=
∫

dΩ′
dfε(n̂′, t) is the angular average of the distribution,

properly normalised: dΩ′
d is dθ′/2π in d = 2 dimensions and dφ′d(cos θ′)/4π

in d = 3. The elastic scattering rate

γel(ε) = 2πν(ε)nv2
0 (6.85)

is defined in terms of the density of states ν(ε) =
∫

ddp′

(2π)d δ(ε − εp′) and
can equally well be obtained by Fermi’s golden rule. Clearly, equation
(6.83) describes a simple exponential decay of the initial angular distribu-
tion fε(n̂, t = 0) towards a completely isotropic distribution 〈fε(t)〉. Thus,
our model of elastic momentum scattering by fixed impurities leaves the ki-
netic energy conserved, but describes the isotropisation of the momentum
distribution with a rate γel.

By the same token, a global net current j0(t) initially different from zero
decreases to zero exponentially fast. In other words, an initial wave packet
launched with a definite velocity loses the memory of its initial direction on
a timescale τel = 1/γel.
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Boltzmann–Lorentz Equation

In order to know on what spatial scale the momentum isotropisation occurs
and how the average position of the wave packet evolves in time, we have to
consider the master equation (6.78) at finite q. We expect diffusive behaviour
to appear on large spatial scales and thus make a Taylor expansion around
q = 0. Retaining only lowest-order terms in q/p % 1 (which corresponds to
spatial scales much larger than the particle’s wavelength), the equation of
motion becomes

∂tρ(p, q, t) + i
q · p
m

ρ(p, q, t) = C[ρ(p, q, t)] (6.86)

with the purely elastic collision integral

C[ρ(p, q, t)] = 2πn
∫

ddp′

(2π)d
δ(ε− εp′)|vp−p′ |2 [ρ(p′, q, t)− ρ(p, q, t)] . (6.87)

The only explicit occurrence of q in (6.86) is now in the ballistic term on the
left-hand side that originates from the free evolution with H0.

The parametrisation (6.75) has the additional advantage that the density
matrix elements ρ(p, q, t) are the spatial Fourier transform of the Wigner
distribution [29]

W (p, r, t) =
1

(2π�)d

∫
ddr′〈r − r′

2
|ρ(t)|r +

r′

2
〉eip·r′/�

=
1

(2π�)d

∫
ddq

(2π)d
eiq·rρ(p, q, t)

(6.88)

that represents the quantum density operator in a classical phase space, see
also Sect. 4.6. Here, we have momentarily restored �’s visibility. With this
standard normalisation, the probability density n(r) = 〈r|ρ|r〉 with nor-
malisation

∫
ddrn(r) = 1 is given as the marginal n(r) =

∫
ddpW (p, r).

Conversely, w(p) =
∫

ddrW (p, r) = (2π�)−dρ(p, 0) is the momentum distri-
bution, and

∫
ddrddpW (p, r) = 1.

A Fourier transform with respect to q now yields the kinetic equation

∂tW (p, r, t) +
1
m

p ·∇rW (p, r, t) = C[W (p, r, t)] (6.89)

with the same elastic scattering integral (6.87). Remarkably, we have obtained
precisely the linear Boltzmann–Lorentz equation for the classical phase-space
density W (p, r, t) under elastic scattering from fixed impurities [30]. For pho-
tons, this equation is known as the radiative transfer equation. Ex post, we
can therefore conclude that the Born approximation (6.65) was the crucial
step that discarded quantum corrections to propagation amplitudes and left
us with a classical phase-space distribution. This interpretation transpires
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also by analysing Feynman diagrams in perturbation theory and path-integral
approaches (see Chap. 4 of [26] for details).

The weak disorder limit in which the Born approximation and Boltzmann
transport theory are expected to be valid corresponds to the regime where
disorder corrections to the free energy of the particle are small, γel(ε) % ε.
The scattering time defines a typical length scale, the elastic scattering mean
free path !el = v0τel or average distance between successive scattering events.
The weak disorder limit can also be stated as 1/(k!el) % 1 which requires
that successive scatterers are placed in the scattering far field: the average
distance !el must be larger than the wavelength λ = 2π/k. This is a low-
density argument because !el = 1/(nσel) in terms of the density n of scatterers
and their total elastic scattering cross section σel.

It is allowed to neglect the explicit q-dependence inside the collision in-
tegral (6.87), which contributes already a factor γel, on hydrodynamic scales
q!el % 1. Consistently, it is precisely in the hydrodynamic regime that we
wish to determine the diffusion constant. We have already derived the conti-
nuity equation (6.81). Making step (ii) of the general argument presented in
Sect. 6.3.1, we now turn to the calculation of the diffusion coefficient in the
linear response regime.

6.3.4 Linear Response and Diffusion Constant

Any phase-space distribution Weq(p) that is homogeneous, independent of
time and rotation invariant, i.e., depends only on the modulus of p, is a
solution of the Boltzmann–Lorentz equation (6.89) since each term van-
ishes separately. The corresponding density matrix elements are of the form
ρeq(p, q, t) = (2π)dδ(q)ρeq(p). This type of solution is called a global equilib-
rium. The underlying statistics could be a Fermi–Dirac or Bose distribution,
or their classical limit, the Boltzmann distribution.

By creating a small gradient of concentration, one can then induce a
linear-response current that is proportional to the driving gradient; the coef-
ficient of proportionality is the diffusion constant. Kinetic theory permits to
calculate linear response coefficients. We will follow the linearisation method
developed by Chapman and Enskog [30] in order to derive the diffusion con-
stant, but in terms of the density matrix components ρ(p, q, t) instead of
the space-dependent Wigner distribution because it will prove useful to work
with Fourier-transformed quantities.

Linearisation à la Chapman–Enskog

Suppose that initially, the distribution function ρ(p, q, 0) is a local equilibrium
solution (i.e., isotropic in momentum) established by local scattering on a
rapid timescale τel = 1/γel. However, we assume a non-delta-like dependence
on q, i.e., a finite gradient in real space. It is therefore no longer a global
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equilibrium solution of the Boltzmann–Lorentz equation. The time τeq it
takes to reach global equilibrium is much longer than the local scattering
time such that we have a small parameter τel/τeq % 1 (sometimes called
the “Knudsen number”). The linearisation method of Chapman and Enskog
works by expanding the distribution function formally in powers of this small
parameter,

ρ(p, q, t) = ρ0(p, q, t) + τelρ1(p, q, t) +O(τ2
el) . (6.90)

For the linear response calculation, these first two terms will suffice. The
collision integral effectively multiplies the distribution by γel = 1/τel such
that C[τn

elρn] = O(τn−1
el ). Identifying equal orders on both sides of the kinetic

equation, we find to order τ−1
el :

0 = C[ρ0] , (6.91)

which is satisfied if ρ0(p, q, t) is locally isotropic. By parity, the current density
(6.82b) then is entirely generated by the correction,

jq(t) =
∫

ddp

(2π)d

p

m
τel(εp)ρ1(p, r, t) . (6.92)

The continuity equation (6.81) then implies that to lowest order, the local
density remains time independent: ∂tρ0(p, q, t) = 0. To this order τ0

el = 1, the
kinetic equation reduces to

i
q · p
m

ρ0(p, q) = C[τelρ1(p, q)] . (6.93)

In order to calculate the current (6.92), we need to solve this equation for ρ1

as function of ρ0. We content ourselves with the simple case of an isotropic
point-scattering potential vp = v0 treated in Sect. 6.3.3 (other cases can be
treated by an expansion in angular eigenfunctions, see [31] for the case of
a potential with scattering anisotropy). Then, using the right-hand side of
(6.84), we find

C[τelρ1] = −ρ1(p, q) (6.94)

plus an isotropic term 〈ρ1〉 that does not contribute to the current (6.92)
anyway and can be dropped such that altogether, the distribution takes the
stationary form

ρ1(p, q) = −i
q · p
m

ρ0(p, q) . (6.95)

Diffusion Coefficient

Inserting (6.95) into (6.92), the resulting current reads

jq = − i
m2

∫
ddp

(2π)d
p(q · p)τel(εp)ρ0(p, q) . (6.96)
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By isotropy,
∫

ddp pipjf(p) = (δij/d)
∫

ddp p2f(p), and the current is collinear
with q. To lowest order in q we find

jq = −iqD0nq , (6.97)

the Fourier-transformed version of the linear response relation j = −D0∇n.
Kinetic theory has allowed us to calculate the diffusion coefficient

D0 =
v2
0τ

d
(6.98)

as the product of an effective velocity and scattering time averaged over the
momentum distribution,

v2
0τ =

1
m2

∫
ddp

(2π)d
p2τel(εp)ρ0(p) . (6.99)

Often, the distribution ρ0(p) is a sharply peaked function around a certain
momentum p0 (for instance, the Fermi momentum pF for electrons), whereas
p2τel(εp), according to (6.85), varies smoothly with the density of states such
that v2

0τ = p2
0τel(εp0)/m

2. In terms of the scattering mean-free path !el, the
diffusion constant for isotropic point scatteres can also be written

D0 =
v0!el
d

. (6.100)

For anisotropic scattering, one has to replace the scattering mean-free path
!el by the transport mean-free path !tr [31].

Diffusion

Inserting the linear response current (6.97) in the continuity equation leaves
us with a simple differential equation ∂tnq(t) = −D0q

2nq(t) that is immedi-
ately integrated to give an exponential decay

nq(t) = e−D0q2tnq(0) (6.101)

for the Fourier components of the initial density fluctuation. Long-range fluc-
tuations (q → 0) take a very long characteristic time τq = 1/(D0q

2) →∞ to
relax because of the constraint imposed by local conservation. This diagonal
decomposition into Fourier modes with their continuous momentum index q
is the analogue of the spin relaxation (6.53), where the discrete index K sep-
arates high-K irreducible modes with rather large relaxation rates γK from
the isotropic component K = 0 or trace that is conserved.5

5 This analogy becomes even clearer if positions in a finite volume are restricted
to a lattice of Ld sites, because the irreducible representations of the discrete
translation group (which under periodic boundary conditions is the d-fold direct
product of the cyclic group ZL) are precisely labelled by the different allowed
q-vectors of the reciprocal lattice [27].
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The expectation value of the average radius squared,

〈r2〉(t) = tr{r2ρ̄(t)} = −∇2
qnq(t)|q=0 , (6.102)

for the diffuse density (6.101) reads:

〈r2〉(t) =
〈
r2
〉
0

+ 2dD0t . (6.103)

As expected, the long-time behaviour of the particle’s displacement is indeed
governed by the Boltzmann diffusion constant (6.100).

6.4 Diffusive Spin Transport

Having described in Sect. 6.2 the relaxation of a single motionless spin in a
fluctuating field, and in Sect. 6.3 the diffusion of spin-less massive particles,
we now combine these two pictures and consider a spin on a massive carrier
particle that moves and encounters impurities. The Hamiltonian is still of the
form H = H0 + V , where H0 describes ballistic propagation in momentum
and spin eigenstates |pσ〉 := |p〉 ⊗ |sσ〉 with spin-independent eigenenergies
εp = p2/2m (spin quantum numbers will from now be called σ in order to
avoid confusion with the particle’s mass). The impurity potential V could
describe momentum scattering, spin-flip scattering, spin-orbit coupling, and
the like, by randomly distributed scatterers.

In the following, we will consider in detail the case of freely orientable mag-
netic impurities that induce spin-flips. Other mechanisms such as spin-orbit
scattering can be treated along the same lines. Actual laboratory realisations
include electronic spin-flip scattering, quite relevant even for very low impu-
rity concentrations, and the randomisation of photon polarisation under the
influence of scattering by atoms with degenerate dipole transitions in cold
atomic clouds.

6.4.1 Master Equation Approach to Diffusive Spin Transport

Deriving the Master Equation

In addition to the elastic momentum scattering potential (6.61) that for clar-
ity we now call Vel, consider then a spin-flip interaction potential

Vsf =
∑

j

vsf(r̂ − xj)S · τj (6.104)

between the spin S and a collection of freely orientable magnetic impurities
modelled as spin 1

2 with Pauli matrices τj centred at sites xj . The magnitude
of spin–spin coupling has been included in the short-ranged potential vsf(r)
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whose spatial dependence induces momentum scattering. The ensemble av-
erage now contains the usual average (6.62) over random sites as well as a
trace tr{τ}(ρ{τ}·) over impurity spins. We will assume that these impurities
are distributed independently and isotropically, ρ{τ} =

⊗
j ρj with ρj = 1

212.
It is now a simple task to derive a spin-diffusion master equation for the

density matrix ρ(t) that operates on the combined Hilbert spaceH = Hs⊗Hp

of spin and momentum by retracing exactly the steps of Sect. 6.3.3 with the
new potential V = Vel+Vsf instead of just Vel. Within the Born approximation
second order in V , mixed terms VsfVel = Vsf Vel give no contribution (just
as the product of averages before), and we can consider the impact of Vsf

separately. A typical term arising in the new spin-flip part is the counterpart
of (6.69), 〈1|Vsfρ(t)Wsf|4〉. Together with the momentum-scattering factors
appearing already in (6.73), we find now an additional sum over spin indices
that defines the action of a spin-flip superoperator

〈σ1|Vρ|σ4〉 =
∑

σ2,σ3

〈σ1|S · τ |σ2〉〈σ3|S · τ |σ4〉〈σ2|ρ|σ3〉

=
∑

σ2,σ3

Sσ1σ2 · Sσ3σ4〈σ2|ρ|σ3〉 ,
(6.105)

where the isotropic average over the impurity spin leads to the scalar con-
traction 1

2 trτ{τiτj} = δij (cf. Exercise 1).
Collecting all terms then gives the master equation that describes elastic

and spin-flip scattering in the small-q limit:

∂tρ(p, q, t) + i
q · p
m

ρ(p, q, t) = C[ρ] + L[ρ] . (6.106)

Here, the elastic collision integral

C[ρ] =
γ

ν(ε)

∫
ddp′

(2π)d
δ(ε− εp′) [ρ(p′, q, t)− ρ(p, q, t)] (6.107)

describes momentum isotropisation with a total scattering rate

γ = γel + γsf (6.108)

that includes the spin-flip contribution γsf = s(s + 1)2πν(ε)v2
sfnsf. Summing

the rates, a prescription known as “Mathiessen’s rule” [32], is permitted if the
scattering mechanisms do not interfere with each other, which is the case in
the low-density Born approximation considered here. Note that the collision
integral (6.107) acts solely on the momentum degrees of freedom, but is the
identity in spin space. Genuine spin-flips are generated by

L[ρ] =
1

ν(ε)

∫
ddp′

(2π)d
δ(ε− εp′)Lρ(p′, q, t) , (6.109)

where L = γsfL̂ is precisely the spin relaxation Lindbladian (6.24) derived in
Sect. 6.2.2, now with the spin-flip relaxation rate γsf.
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Diffusive Spin Relaxation

Solving the spin-flip master equation (6.106) in the linear response regime
is now exceedingly simple by projecting it onto irreducible spin components
ρ(K) =

∑
Q ρKQT

K
Q since the spin relaxation Lindbladian is diagonal in that

basis, Lρ(K) = λKρ
(K), with eigenvalues λK given by (6.46).

Summing the master equation for the Kth spin sector over p gives the
continuity equation

∂tn
(K)
q (t) + iq · j(K)

q (t) = −γKn
(K)
q (t) (6.110)

for the density n(K)
q =

∫
ddp

(2π)d ρ
(K)(p, q) and associated current density j

(K)
q .

The spin-flip Lindbladian is responsible for the appearance of a source term
on the right-hand side, or rather a sink with spin relaxation rate

γK = |λK | = γsf
K(K + 1)
2s(s+ 1)

. (6.111)

In the limit q → 0, we recover exactly the global spin relaxation (6.48) of
Sect. 6.2.3. In particular, the total trace is conserved since the spin trace is
the K = 0 sector with vanishing eigenvalue λ0 = 0.

In the linear response regime, the Chapman–Enskog method of Sect. 6.3.4
carries through in each spin sector K. A difference occurs for the time deriva-
tive of the locally isotropic component ρ

(K)
0 (p, q, t). The master equation

(6.106) implies
∂tρ

(K)
0 (p, q, t) = −γKρ

(K)
0 (p, q, t) , (6.112)

which is solved by ρ
(K)
0 (p, q, t) = e−γKtρ

(K)
0 (p, q, 0) instead of just being

constant as in Sect. 6.3.4. Finally, the spin-sector density components show
diffusive as well as spin-relaxation dynamics

n(K)
q (t) = e−D0q2te−γKtn(K)

q (0) , (6.113)

where the Boltzmann diffusion constant D0 is evaluated with the total mo-
mentum relaxation time τ = 1/γ from (6.108).

Now we can answer the question that was the starting point of the lecture
(cf. Fig. 6.1): Imagine that we can inject spin-polarised particles |↑〉 := |s, σ =
+s〉 with probability p↑(0) = 〈↑|ρ0|↑〉 = 1 on one end of a diffusive medium
of length L. What is the probability p↑(L) of retaining the spin polarisation
at the other end, assuming that we have spin-sensitive detection?

By taking the matrix elements 〈↑|ρ(K)(t)|↑〉 of each irreducible spin com-
ponent, we find that the probability relaxes during the transmission time
t = L2/2D0 as

p↑(t) =
1

2s+ 1
+

3s2

s(s+ 1)(2s+ 1)
e−t/τ1 + . . .

=
1
2
(1 + e−t/τ1)

(6.114)
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with the last line valid for electrons for which 1/τ1 = 4γsf/3. Equivalently,
the degree of spin polarisation

π(t) =
p↑(t)− p↓(t)
p↑(t) + p↓(t)

= e−t/τ1 (6.115)

simply relaxes from unity to zero. Naturally, for long enough times, the distri-
bution relaxes towards its equilibrium value peq = 1

2s+1 to have any magnetic
quantum number σ = −s, . . . , s.

In terms of length scales, the spin relaxation time permits to define the
spin relaxation length λsf =

√
2D0τsf. In solid-state devices, the density of

magnetic impurities can be controlled such that γsf % γel which means that
spin coherence can be maintained quite efficiently, even on scales L ( !el
where the momentum dynamics is no longer ballistic, but already diffusive.

6.4.2 Quantum Corrections

In the Boltzmann transport theory developed in Sect. 6.3, one propagates
effectively classical probabilities. However, in an environment that preserves
the phase coherence of the wave, one must propagate probability amplitudes
that, by the superposition principle, allow for interference phenomena. Elas-
tic impurity scattering does preserve the phase coherence of the propagating
wave which means that we have to expect quantum corrections to the Boltz-
mann transport theory whenever external phase-breaking mechanism are so
rare that the corresponding dephasing time τφ is much longer than the elastic
scattering time τel.

Weak Localisation

A prominent example for such a quantum correction is weak localisation
(WL): the resistance of weakly disordered metallic samples shows a negative
magnetoresistance ∂ρ/∂B > 0 at small fields if spin-orbit scattering is absent
[33, 34]. This contradicts the classical Boltzmann–Drude picture that predicts
that the resistance should increase with a magnetic field. The reason can be
understood by considering the quantum return probability to a point which
includes the constructive interference of counter-propagating amplitudes and
is therefore larger than the classical probability, see Fig. 6.3. The interference
effect is masked by a large enough magnetic field since loops of different sizes
pick up different Aharonov–Bohm phases.

Without any dephasing mechanism nor an external magnetic field, the
interference correction D = D0 + ΔD to the classical diffusion constant D0

is given by summing the contributions of all closed diffusive paths,

ΔD

D0
= − 1

π�ν(ε)

∫
ddq

(2π)d

∫ ∞

0

dte−D0q2t ∝
∫

ddq

(2π)d

1
D0q2

. (6.116)
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Fig. 6.3. Diffusive path (above) with the classical Boltzmann contribution of co-
propagating amplitudes (left) and the corresponding counter-propagating ampli-
tudes (right) that lead to weak localisation corrections

In low dimensions d = 1, 2, this q-integral diverges for small q which indi-
cates that WL corrections become very important whenever the interfering
amplitudes can explore large length scales. The formal divergence is cured by
a cutoff that can be either the system size itself or a finite phase-coherence
length Lφ =

√
D0τφ due to dephasing mechanisms on a timescale τφ.6

Dephasing of Weak Localisation by Spin-Flip Scattering

Including spin-flip scattering into the weak-localisation picture can be done
by diagonalising the spin-flip vertex appropriately [23]. The irreducible sub-
spaces turn out to be the usual singlet and triplet state subspaces spanned
by the Hilbert-space vectors |KQ〉. 7 To sketch the result, the WL correction
is written

ΔD

D0
= − 1

π�ν(ε)

∫
ddq

(2π)d

2s∑

K=0

wK

D0q2 + τc(K)−1
, (6.117)

where each spin channel comes with a weight wK = (−)2s+K(2K+1)/(2s+1).
For electrons, w0 = − 1

2 and w1 = 3
2 . More importantly, each spin channel is

damped with its coherence time τc(K). They are given in terms of the spin
relaxation rates (6.46) by a recoupling relation that reduces to

1
τc(K)

=
2
τsf

+ λK =
2
τsf

(
1− K(K + 1)

4s(s+ 1)

)
(6.118)

such that for electrons τc(0) = τsf/2 and τc(1) = 3τsf/2.

6 The ultraviolet divergence for large q is cut off by the shortest scale of scattering,
�el, and irrelevant for the present considerations.

7 Not operators |KQ) in Liouville space as for the propagated intensity: the dif-
ference is due to the fact that the two amplitudes in weak localisation loops
propagate in opposite directions such that two states have to be recoupled in-
stead of a state and its complex conjugate.
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Clearly, the interference in all spin channels is dephased rather efficiently
with a rate given essentially by the spin-flip rate, the numerical prefactor
being entirely fixed by geometry. This effect is visible even in quite pure
samples as admirably shown by F. Pierre and coworkers [35], see Fig. 6.4.
The complete theory needed for linking the experimental data to impurity
concentrations requires to take into account the interaction between elec-
tronic excitations near the magnetic impurity (Kondo physics) as well as the
temperature-dependent dynamics of impurity spins (Korringa physics) that
have both been neglected within the present lecture; for details, see [35].

Fig. 6.4. This “set of experiments suggests that the frequently observed ‘saturation’
of τφ in weakly disordered metallic thin films can be attributed to spin-flip scat-
tering from extremely dilute magnetic impurities, at a level undetectable by other
means”; reprinted with permission from F. Pierre et al. [35]. Copyright (2003) by
the American Physical Society
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Multiple coherent scattering of photons in clouds of laser-cooled atoms is
also subject to spin-flip physics: the so-called coherent backscattering effect
(an interference enhancement of backscattered intensity) is severely reduced
when photons are scattered by dipole transitions with a Zeeman degener-
acy [36]. The analytical theory for multiple coherent scattering of polarised
photons by degenerate dipole transitions employs the concepts of irreducible
decompositions exposed in Sect. 6.2. Compared to electrons, the theory ap-
pears much simpler because at low light intensity, photons do not interact.
However, the treatment of photon propagation is more involved because the
field transversality adds another source of polarisation relaxation that needs
to be taken into account [37].

Thus, magnetic impurities are a very efficient source of dephasing for
interference of spin-carrying particles: the large ground-state degeneracy im-
plied by the random orientations of freely orientable impurity spins permits
dephasing even at zero temperature – when other decoherence processes like
electron–phonon or electron–electron scattering are suppressed – because no
energy exchange is involved and stocking which-path information comes for
free. In return, whenever the impurity degrees of freedom can be constrained
by other means, then perfect coherence is restored. This has been shown
in Aharonov–Bohm interference experiments with electronic samples subject
to a strong external magnetic field that aligns the impurity spins [38, 39].
Similarly, in atomic clouds, an external magnetic field that lifts the inter-
nal atomic Zeeman degeneracy can be used to enhance the effective phase
coherence length of diffusing photons [40].
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– for the damped harmonic oscillator,
250

– number representation, 234
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commutant, 23
completely positive
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master equation
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damped harmonic oscillator, 250
– robust states, 273
– dissipation rate, 250

decoherence, 229
– as continuous monitoring, 225
– by vacuum fluctuations?, 236
– in a quantum dot, 267
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– quantum, 240
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entanglement, 167
– entropy, 79
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– – additive, 78
– – convexity, 78
– – subadditive, 78
– monotone, 75
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– monotonicity, 46
– operational, 49, 50
– super-additivity, 44
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– distance, 35
– metric, 35

Fourier’s law, 294
Fubini–Study
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– metric, 12

functional
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Gaussian distribution, 284
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equation
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– orthogonal sum decomposition, 18

Hilbert-Schmidt product, 175

interaction
– non-invasive, 223
– scattering, 224

irreducible tensor operator
– vector, 289

irreducible tensor operator, 288
– scalar, 289

Jones polynomial, 110, 113
– for closures of 3-braids, 115

Jones–Wenzl projector, 137
jump operators, 245

knot, 90
– invariant, 91

Kraus
– operators, 225, 285
– representation, 241, 285

L-torus, 171
Lüders–von Neumann measurement, 28
Lagrangian surface, 171
Lamb shift, 259, 299
Larmor frequency, 284
Lie group, 281
Lindblad operators, 207, 245
Lindbladian, 287
link, 90
Liouville

– superoperator, 245
– operator, 246
– space, 286
– – basis, 290

Liouville–von Neumann equation, 283
Liouvillian, 286
local transformations, 195
local operation, 74
local operations and classical communi-

cations (LOCC), 75

majorization, 76
Mandelstam–Tamm inequality, 8

– extended, 42
map

– completely positive, 73, 241
– dual, 242
– dynamical, 240
– – operator-sum representation, 241
– positive, 69

marginal distribution, 166
Markov approximation, 298
Markovian master equation

– continuous monitoring, 249
Maslov index, 170
master equation

– Markovian, see Markovian master
equation
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– for dephasing, 250
– generalized, 256

master equation
– Lindblad form, 244
– generalized, 240
– Caldeira–Leggett, 253
– Lindblad form, 242
– for a dephasing spin, 286
– for spin flip scattering, 307
– monitoring approach, 259
– – for a Brownian particle, 263
– – for a quantum dot, 267
– second standard form, 244
– unravelling, 248
– weak coupling formulation, 255

Mathiessen’s rule, 307
Matsubara frequency, 235
measurement

– Lüders–von Neumann, 28
– back-action, 227
– efficient, 227, 228
– indirect, 228
– non-destructive, 226
– operator, 227
– projective, 225
– raw, 227
– unsharp, 227
– von Neumann, 72

metric
– Bures, 35
– Fisher, 35
– Fubini–Study, 12
– space, 6

minimal projection, 29
Moyal bracket, 211
multipartite system, 61

negativity, 80
Noether’s theorem, 282
norm

– ∞-, 16
– 1-, 15
– C∗-, 16
– Frobenius, 15
– Schatten, 15
– functional-, 15
– operator, 16
– von Neumann, 15

observable, 17
– either-or, 166

ohmic coupling, 235
operator

– ∗-algebra , 19
– Casimir, see Casimir operator
– Lindblad, see Lindblad operators
– algebra, 19
– displacement, 175, 232
– measurement, 227
– non-hermitian, 246
– normal, 17
– trace class, 16
– translation, 174
– time ordering, 231

P-function, 199
partial transpose, 70
pentagon identity, 133
phase

– Berry, 10
– averaging, 230
– change, 9
– geometric, 10
– transport condition, 10

phase space correlations, 185
placement problem, 90
plat closure, 150
pointer

– basis, 270
– states, 224, 270

pointer states, 224
– and coherent states, 270, 273
– of the damped harmonic oscillator,

273
– robust states, 224

polynomial
– bracket, see bracket polynomial
– Jones, see Jones polynomial

positive operator-valued measure
(POVM), 226

projector-value measure (PVM), 226
purification, 36
purity, 186

– rate of loss, 271

quantum
– channel, 225, 285
– – operator sum representation, 285
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– operation, 225
– trajectory, 248

quantum dot
– decoherence, 267

quantum computation, 96
quantum computer, 95
quantum gate

– entangling, 99
– CNOT , 99
– two qubits, 99
– universal, 99

quantum integer, 140
quantum topology, 91
quaternion, 105

– pure, 106
qubit, 96

– dephasing, 230
qunits, 96

Redfield equation, 256
reduced density matrix, 66
Reidemeister moves, 91
robust states, see pointer states
rotation

– active, 279
– group of, see SO(3)
– passive, 279
– proper, 279

rotational invariants, 292
rottating wave approximation, 257

scattering mean-free path, 305
Schatten

– distance, 15
– norm, 15

Schmidt
– basis, 65
– coefficients, 65
– decomposition, 65, 169, 197
– number, 169
– vector, 76

Schrödinger
– cat states, 188
– covariance matrix, 183

Schwarz inequality, 20
secular approximation, 257
singular value, 65

– decomposition, 65
skew product, 165

SO(3), 279
– covering group SU(2), 279
– parametrisation, 279
– representation, 281

spin
– irreducible superoperators, 290
– isotropic relaxation, 292
– network, 131
– relaxation rate, 284, 291

spin polarization
– degree of, 309

spintronics, 277
state, 2, 17, 113

– classical separable, 198
– entangled pure, 99
– EPR, 102
– Schrödinger cat, see Schrödinger

cat states
– classical pure, 198
– coherences, 223
– coherent, see coherent states
– density operator, 16
– entangled mixed, 63
– entangled pure, 63
– extension of a, 22
– extremal, 21
– lift of a, 22
– multipoles, 289
– normal, 18
– normal exactly, 18
– of a unital ∗-algebra, 20
– of an algebra B(H), 17
– pointer, see pointer states
– populations, 223
– product, 63
– product mixed, 63
– pure, 21, 29, 169
– restriction of a, 21
– robust, see pointer states
– separable, 63, 198
– separable mixed, 63
– singular, 18
– space, 20
– summation, 113
– thermal, 234

SU(n) channel, 286
SU(2), 104, 279, 281
subsystem, 21
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– incomplete, 21
superoperator, 240, 286

– Liouville, 245
– jump, 246

symmetry, 13
symplectic

– area, 165
– transformation, 164

Temperley–Lieb
– algebra, 123
– category, 123

thermal
– regime, 236
– state, 234

time ordering operator, 231
topological quantum field theory

(TQFT), 127
topological quantum field theory

(TQFT)
– graphical three-dimensional, 133

trace
– canonical, 27
– induced, 34
– partial, 34

transformation
– canonical, 164
– gauge, 8, 9
– local, 195
– symplectic, 164

transformer identity, 53
transition probability, 11, 30, 35, 37
transport, 294

– ballistic, 294
– mean-free path, 305

trinion, 128
– pattern, 128

U(2), 105
uncertainty, 8, 183

vacuum regime, 235
vertex weight

– of a state, 113
– product, 113

von Neumann
– algebra, 22
– entropy, 186
– measurement, 72
– norm, 15

weak coupling approximation, 297
weak disorder limit, 303
weak localization, 309

– spin-flip, 310
Wedderburn’s theorem, 27
Wehrl entropy, 193
Weyl

– propagator, 212
– representation, 180
– symbol, 180

Wigner
– characteristic function, 233
– function, 182
– – cross-, 211

Yang-Baxter
– algebraic equation, 99
– equation, 97
– operator R, 97
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